

A framework for handling HILP events

Wide-area interruptions are extraordinary events with severe impacts on society's critical functions, but usually with low probability (high impact low probability - HILP events). Controlling risks and vulnerability related to HILP events is an essential part of asset management.

In risk based asset management it is important to find the right trade-off between investments and maintenance on one side and security of electricity supply (SoS) and societal impact of interruptions on the other.

A framework for handling HILP events is presented, and used to structure and analyse some

The bow-tie framework is used to structure HILP events:

- Threats/hazards
- Unwanted events
- Final consequences for end-users
- Emergency preparedness, restoration of supply
- Vulnerabilities and barriers.

Barriers grouped in four types:

- Prevent component failure (**B1**)
- Prevent power system failure (**B2**)
- Facilitate restoration (B3)
- Reduce end-users consequences

Blackouts

(B4)

100.000 US /Canada 2003 Cascade Canada 1998 10.000 Ice storm Sweden/Denmark 2003 (log MW) Voltage collapse W. Norway 2004 Sweden 2005 Delayed protection 1.000 Storm Gudrun response connected 100 Dis 10 **Steigen, Norway 2007** Storm and icing **Oslo S 2007** Cable fire 10 100 1000 0,1 Stipulated average duration (log h)

Blackouts: Inadequate barriers			
Barriers	Gudrun 2005	Steigen 2007	Oslo S 2007
Prevent component failure			
Strength and design of construction			
Vegetation management and			
adequate choice of right-of-ways			
Condition monitoring			
Prevent power system failure			
Redundancy; reserve capacity			
System operation response			
Facilitate restoration			
Good and known restoration plan			
Access to personnel and material			
Communication			
Coordination and clarification of responsibility			
Reduce end-users consequences			
Alternative energy supply			
Back-up in connected infrastructure			
Information to the public			

SINTEF

Authors: Gerd Kjølle, Oddbjørn Gjerde and Agnes Nybø

Contact:

Senior Research Scientist, Ph D Gerd Kjølle, Gerd.Kjolle@sintef.no

SINTEF Energy Research, NORWAY

Conclusions

- Previous blackouts: several barriers had inherent weaknesses.
- Need for indicators and models to describe vulnerabilities.
- The framework will help classify events, identify barriers and vulnerability indicators.
- The framework will be used in further work to identify needs for indicators and tools to monitor vulnerabilities.