Nettverksmøte Risikostyring Statnett 2012-11-08

Perceiving, Predicting & Preventing Extraordinary Events

Emil Hillberg Manager Network Studies

PhD project background

- Objective: to develop models and methods to analyse the risk of <u>extraordinary events</u>
 - For increased security and/or
 - increased utilisation of the power system
- Supervisors:
 - Professor Kjetil Uhlen NTNU
 - Adjunct Professor Gerd Kjølle NTNU/SINTEF
- Schedule:
 - 1 April 2009 30 September 2012
- Funding:
 - KMB: Vulnerability and security in a changing power system
 - NTNU duty work: Hardanger utvalget
 - SINTEF: security of supply, smart transmission grids

Outline

Preventing

- Mitigating solutions
- Predicting
 - Reliability assessment
 - Contingency analysis

Perceiving

• Characteristics of extraordinary events

Perceiving Extraordinary Events: What is an Extraordinary Event?

- Ø Large disturbance Blackout Extreme contingency
- **Ø**Wide spread consequences with high impact on society
 - SE/DK blackout 23Sept 2003: up to 2 billion SEK
 - **Ø**US/CA blackout 14Aug 2003: up to **10 billion USD**
- ØDifficult to predict
 - Solve probability but many unknowns affect the frequency
 - Carge consequences but many uncertainties affect the extent
- ØDifficult to prevent the unpredictable...

Perceiving Extraordinary Events: Event categories

Perceiving Extraordinary Events: Identifying Critical Characteristics

Perceiving Extraordinary Events: Summary

- Difficult to assess risk
 - Many uncertainties in probability and consequence
- Critical characteristic of extraordinary events
 - Instability

Outline

Preventing

Mitigating solutions

Predicting

- Reliability assessment
- Contingency analysis

Perceiving

• Characteristics of extraordinary events

Predicting Extraordinary Events: Power System Reliability Assessment

qDifferentiation between: POWER SYSTEM RELIABILITY Adequacy: the ability of the system (generally transmission and generation) Adequacy Security to satisfy the demand Dynamic functionality Stationary functionality ØSecurity: the systems resilience to disturbances **Power System Stability** (i.e. capability to regain stable operation when exposed to a disturbance) Rotor angle Frequency Voltage

Over the dynamic functionality
Over flow, calculating <u>adequacy</u> and neglecting the dynamic functionality

Predicting Extraordinary Events: Contingency analysis

N-1 secure system operation

- Loss of any one component should not affect the load

- Conventional contingency analysis techniques are used to identify *N-1* secure transfer capacity
 - i.e. Thermal & Stability limitations
 - Based mainly on power flow calculations

Predicting Extraordinary Events: Summary

- Conventional techniques are insufficient to assess the risk of blackouts
 - ® Novel / unconventional risk assessment techniques are required

Outline

Preventing

Mitigating solutions

ONTNU

Reliability assessment

Predicting

• Contingency analysis

Perceiving

• Characteristics of extraordinary events

Preventing Extraordinary Events: Unconventional risk assessment techniques

Risk of blackout: No. of subsequent failures leading to instability

k_{min}-index

Examples from historical events:

- Sweden/Denmark 2003: k_{min}≤2 (independent faults)
- Italy 2003: *k_{min}≤*2 (thermal overload)
- Europe 2006: k_{min}≤3 (manual operation)
- Brazil 2009: k_{min}≤3 (extreme weather)

Preventing Extraordinary Events: Novel visualisation techniques

() SINTEF **()** NTNU

Preventing Extraordinary Events: Novel stability assessment techniques

Preventing Extraordinary Events: Novel instability prevention techniques

Equal-Area Criterion used for SIPS improvements

Conclusions

- Analysing risk of extraordinary events require
 - Unconventional risk & reliability techniques
 - Including multi-level contingency analysis
 - And dynamic models and tools
- Several solutions identified to improve perception, prediction & prevention of extraordinary events, but:
 - There are still many challenges & opportunities ahead!

Nettverksmøte Risikostyring Statnett 2012-11-08

Perceiving, Predicting & Preventing Extraordinary Events

Emil Hillberg Manager Network Studies

