D 3.2.1 New standard property model for CO₂ mixtures

The IMPACTS project was initiated to understand the impact of impurities in CO₂-rich mixtures on the process chain of Carbon Capture and Storage (CCS). This aim requires various interdisciplinary contributions resulting from, e.g., process simulations, geological research, material science, or safety analyses. However, at a certain point all these efforts demand the knowledge of thermodynamic properties of the involved mixtures. Nowadays, the most accurate way to determine these properties is by means of empirical multiparameter equations of state. As a member of Work Package 1.2 ("Thermophysical behavior of CO2 mixtures") the thermodynamics group of RUB (Ruhr-Universität Bochum) is continuously developing an accurate equation of state for CO₂-rich mixtures including components found to be relevant in CCS applications. In addition, new algorithms were developed to face the challenges of phase stability analyses and predictions of various phase equilibria including fluid phases as well as hydrates or solids of CO₂ and water. It is not surprising that neither the application of these algorithms nor the calculation of thermodynamic properties from the equation of state can be individually handled by typical users. Consequently, a simple interface is needed that enables straightforward calculations based on these complex thermodynamic models and algorithms. Within Work Package 3.2 ("Technical knowledge base for CO₂ transport and storage") RUB is providing the software package TREND (see Span et al., 2015) to the CCS community. Since 2009, this property package is continuously improved and extended. The latest version 2.0.1 will soon be distributed via the IMPACTS eRoom and is supposed to become an element of the IMPACTS Toolbox.

A	D	C	D	C	٣	G	Н	1	J	K	L	М	N	0	P
2	INPUT PAR	AMETERS				CALCULABLE PROPERTIES									
1	Path to EOS	D:\Zustandagie	chungen	Software (T	ortois	Property	Symbol	VBA Function	Valu	o Unit	1	/		1 1	
5						COMMON THERMODYNAM	AIC PROPERT	165					/		
à	Input code	TP.				Temperature	T	TEOS	400,00						
7	Property 1	400,0	ĸ			Density	P	DEOS	1627,51	mol/m ²	TR				
3	Property 2	3	MPa .			Pressure	P	PEOS		D MPa					
9				_		Internal energy	14	UEOS	21054,3						
0		mole fractions		Mix. Rules		Enthology	h	HEOS	24136,5		Thermodynamic i	Delesson .	e Fasian	In Date	
1	002			1 1		Entropy	3	5505		1 J/mol/K					
2	00			-		Gibbs free energy		GEOS	-18769,8		TREND 2.1. Prof. DrIng	, Roland Span,	Thermodynan	nics, Ruhr-Un	iversität Bodhu
	nitrogen			-		Heimboltz free energy isoboric heat capacity		AEO5 CPEO5	-21841,9	5 J/mol/K					
• 5	water	0,02		· · · ·			с,								
5						Isochoric heat capacity	C E	CVEOS		9 J/mal/K					
						Speed of sound	Wz	WSE05	308,4						
/						Second virial coefficient	8	8VIREO5							
						Third virial coefficient	C	CVIREOS		9 m ⁶ /mol ²					
9						Fourth virial coefficient	D	DVIREOS	-2,568E-1						
6						Cross virial coefficient	B12	812505		lom\ ^e m 9					
1						Ideal gas isobaric heat capacity	c,°	CPIEOS		9 J/mol/K					
2						Quality (malar vapor fraction)	β	qeos		0 mol/mol					
3						Compressibility factor	Z	2505	0,00						
4				_		Numerical pressure solution (in the VLE region)	Pane	PNUMEREO5		0 MPa					
6						Volume expansivity	а,		0,0023556						
6						isentropic compressibility	K.2	COMPSEOS							
7						Isothermal compressibility	KT	COMPTEOS							
8						isentropic expansion coefficient	k_{z}	EXPANSEO5							
9						isothermal expansion coefficient	k_T	EXPANTEOS							
0						Joule-Thomson coefficient	μ	JTCDEOS	-322						
	H Propertie	s Fish Pha	se envelope	Kaniona	cycle	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0						-		

Figure 1: Example calculations of several relevant state properties within the TREND Excel interface for a multicomponent CO₂ -rich mixture at given temperature and pressure.