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Preface
My work on intersection algorithms started in 1978 when I was employed

at the Central Institute for Industrial Research (SI) in Oslo, Norway. SI later
merged with SINTEF, where I am currently employed. Funding of this work
has been through governmental and industrial projects aiming at supplying
geometric modeling tools to industry and CAD-vendors. For many years I
intended to write a doctoral thesis. However, as geometric modeling activity
was steadily growing, I could not find time for the work.
Then in 1992, after being a manager for five years, my colleague Dr.

Morten Dæhlen proposed that he could take over management of the geo-
metric modeling department. This suited me well as I had just become a
father and wanted to spend less time on administration and traveling.
My intent, when work on the thesis started, was to get a better un-

derstanding of the intersection problem in general, and possibly extend the
theoretical basis for intersection algorithms by moving into higher dimensions
than IR3. In addition, I wanted to take a closer look at the combination of al-
gebraic and parametric representations in intersection algorithms. I started
pursuing extensions of my earlier work experimenting with Mathematica.
Then gradually the idea of approximative implicitization emerged, and the
main bulk of the thesis was gradually directed towards approximation theory.
During the autumn of 1995, a first version of this work was compiled from

documents produced during the research process. Then with very valuable
advice from Professor Tom Lyche at the Institute for Informatics at the Uni-
versity of Oslo, this document has been molded into its final shape. During
the process, some material has been removed and some material has been
extended. Very late in the process the results on parametric approximation
of algebraically represented manifolds emerged.
I would like to thank SINTEF Applied Mathematics for giving me suffi-

cient time to pursue my ideas on intersection algorithms. During the final
process my father, Brynjolf Dokken, has used a lot of time proof reading and
simplifying the language.
I hope that my children, Jørgen and Julie, and my wife Mona have not

suffered too much when my mind has been occupied with problems related to
intersection algorithms. I want to thank them for giving me time to complete
this work.

Oslo, December 1996.

In December 1999 and January 2000 corrections and comments to these
thesis from Prof. T.W. Sederberg and others were analyzed in detail and
corrections done to the original manuscript. Oslo, January 2000.
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Chapter 1

Introduction

Since the early days of CAD/CAM, intersection algorithms have played a
central role in making geometric modeling systems work. The first geomet-
ric modelers were curve based, and efficient algorithms were developed giv-
ing satisfactory intersection results. One example of such a system was the
AUTOKON system, a complete batch oriented CAD/CAM-system for ship
building developed in Norway in the sixties and seventies. However, when
the development of surface and volume based systems started, intersection
algorithms became more complex.
In curve based systems the result of an intersection is points or segments

of the curves being intersected. Thus, describing the intersection is fairly
straight forward. In surface based systems the result of an intersection is
points, curves, and regions of the surfaces being intersected. The surfaces
being intersected are often rational parametric piecewise polynomial surfaces.
It is well know that, in most cases, the curves resulting from the intersec-
tion of two such parametric surfaces cannot be represented by rational or
nonrational parametric piecewise polynomial curves, e.g. see [Bajaj:93]. To
harmonize with the formats already used in the systems, the intersection
curves are expected to be described by such curves. Since in most cases no
exact parametric representation exists, approximations are introduced.
The nature of the approximations employed in a specific system is de-

pendent on the strategies used for designing the geometric modeling system
as well as the requirement for geometric quality in the system. Intersec-
tion has thus become an important issue in the competition between vendors
of CAD/CAM-systems and between vendors of geometric modeling technol-
ogy. Thus, the commercial players in the CAD/CAM and geometric model-
ing market are very restrictive with what they publish on their intersection
algorithms. As a consequence, most papers published on such algorithms
originate from academic institutions.
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1.1 Intersection Algorithms Developed in In-
dustrial Projects

The author of this thesis is employed at a noncommercial research institute
in Norway called SINTEF where he has been working with intersection algo-
rithms since 1979. The projects financing the research and development of
intersection algorithms have been funded both by government and industry.
As a consequence, some results have been published, while others have not.
The project initiating this work was an Inter-Nordic project named GPM

(Geometric Product Models 1978-1981). The goal of the project was to de-
velop FORTRAN subroutine packages for geometric modeling. The work at
SINTEF in Oslo was focused on sculptured surfaces. Among the results was
a detailed specification [GPM-16:80] of a sculptured surface system and a
partial implementation of the specification. The most important part rele-
vant to this thesis was a B-spline library [GPM-26:83]. The library contained
both algorithms for intersection of two B-spline represented curves and for in-
tersecting B-spline represented curves with first and second degree algebraic
curves and surfaces. Recursive subdivision was performed by subdivision
using the [Oslo-algorithm].
The work from the GPM-project was carried on in a German-Norwegian

project named APS (Advanced Production System 1981-1987). A result rel-
evant to this thesis was a subroutine package named APS B-spline library
[APS:87]. APS B-spline library consists of a wide range of intersection al-
gorithms including the intersection of two B-spline represented surfaces and
the intersection of B-spline represented surfaces and first and second degree
algebraic surfaces. A first publication of results from this work can be found
in [Dokken:85]. The main topic of this paper was the combination of B-spline
curves and surfaces with algebraic surfaces. In addition examples of recursive
subdivision techniques used for loop detection were presented. This work on
loop detection was further elaborated in [Dokken:89]. The paper also ad-
dressed strategies for where to subdivide a surface to get what is denoted
a “simple intersection case”, i.e. identifying intersection situations with no
internal loops.
In 1988 the development of a new spline library, SISL (SINTEF Spline

Library) was started at SINTEF. The new properties in this library were:

• Programmed in C.

• Double precision instead of single precision.

• Combine recursive subdivision and iteration to speed up calculations.
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• New marching algorithms to get better curve tracks with less data.

The marched curves in SISL are represented by piecewise cubic Hermite
polynomials, and represented in a nonuniform B-spline basis. The tangent
lengths used in the Hermite interpolant are based on the circle approximation
methods described in [Dokken:90].
SISL was delivered to Hewlett-Packard in 1989 and is the basis of NURBS

technology used in the solid modeling system Precision Engineer: Solid De-
signer. This system is marketed by the Hewlett-Packard company CoCreate.
In 1996 the development of SISL is still continuing in close cooperation with
CoCreate.
In 1992 I decided that the thesis should approach the intersection problem

from a theoretical angle. The idea was to combine my long practical experi-
ence in the development of intersection algorithms with a generic approach
to the intersection problem. Thus, the title of the thesis is “Aspects of In-
tersection Algorithms and Approximation”. No new and better intersection
algorithm is presented. However, some central issues in the development of
intersection algorithms are addressed. The most important of these are:

• Intersection within a given tolerance.

• Loop elimination.

• Approximation of parametrically represented manifolds by algebraic
hypersurfaces.

• Approximation of algebraically represented manifolds by parametri-
cally represented manifolds.

The approximation problems above are given the most attention. This is
because better approximation methods are important in both loop elimina-
tion and the representation of intersection results.
The thesis is not limited to the intersection of curves and surfaces in IR2

and IR3, but addresses problems related to:

• Intersection of manifolds of possibly different dimensions in IRl, l ≥ 1.

• Intersection of a manifold and a number of hypersurfaces in IRl, l ≥ 1.
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1.2 Relation to Trends

In [Hohmeyer:92] intersection algorithms were classified into two groups:

• Re-Approximation Techniques. The geometries to be intersected
are approximated with a large number of simpler geometric elements,
thus transforming the problem to a simpler but more voluminous geo-
metric problem. When high accuracy is necessary or the intersections
are singular, e.g. the intersection between two surfaces is a curve where
the normals of the two surfaces are parallel, the re-approximation meth-
ods have limited applicability.

• Direct Decomposition Methods. Among these Loop Detection De-
composition is the most general.

In this thesis the basic philosophy is Loop Detection Decomposition.

1.3 Why is Research on Intersection Algo-
rithms Important?

Design and production are steadily growing more computer based. Thus,
the design and production process is influenced by the capabilities of the
computer systems supporting these processes.
Much effort has been put into making faster and more stable hardware.

An other equally important issue is the development of better software. The
software for modeling of complex geometric shape must, to be of practical
use, satisfy the following criteria:

• Easy to use.

• Have a sufficient response to the problem posed.

• Produce geometric models of high quality, i.e., to produce geometric
models that have sufficient accuracy with a description that is as com-
pact as possible.

If the intersection algorithms in such a system are inaccurate or too slow,
the user will have to reduce his design ambition and make geometric models
with a lower quality than originally intended. Thus, robust, fast and accurate
algorithms are important to enable better solutions in a product development
process.
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1.4 Summary

In Chapter 2 we present problems related to the intersection of two compact
manifolds of possibly different dimensions in IRl, l ≥ 1. Topics addressed
are:

• A generic structure for intersection algorithms.

• The intersection of two compact sets within a tolerance.

• Representations of intersections within a tolerance.

• Separating objects to determine that no intersection exists.

• Where to subdivide objects being intersected to decide if an intersection
result is a single object or two or more objects.

• Identification of situations where the result of the intersection is objects
touching boundaries of one of the manifolds intersected.

In Chapter 3 we look at necessary properties for representing hypersur-
faces and parametric manifolds to enable stable numeric intersection calcula-
tions. The much used tensor product Bernstein and B-splines basis functions,
as well as the Bernstein basis over a simplex, satisfy these requirements.
Chapter 3 ends with the description of the representation of algebraic hyper-
surfaces in barycentric coordinates.
Barycentric coordinates are also paramount in Chapter 4 where we look at

combining a parametrically represented manifold and an algebraically repre-
sented hypersurface to a function over the parameter domain of the manifold.
Such combinations of the two representations can be used for:

• Reformulating the intersections between a parametrically represented
manifold and algebraic hypersurface(s) to the problem of finding the
zeroes of one or more functions.

• Approximating a parametrically represented manifold with an algebraic
hypersurface. This type of approximation can be used for changing an
intersection of parametrically represented manifolds to the intersection
of algebraically represented hypersurfaces and one parametrically rep-
resented manifold.

The behavior of these combinations is presented in Section 4.1. In the
subsequent sections different aspects of such combinations are addressed. In
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Section 4.9 an algorithm, named “Approximative Implicitization” for find-
ing an algebraic approximation to a parametrically represented manifold, is
presented.
In Chapter 5 we look at how to represent intersection results by para-

metric or algebraic methods. In addition, a method for approximation of
algebraically represented manifolds by parametrically represented manifolds
is presented.
As the intersection of parametric surfaces in IR3 can be represented as

curves in the parameter domain of the surfaces, we devote Chapter 6 to
the problem of approximation of curves in IR2. The topic addressed is high
accuracy cubic Hermite approximation of:

• Curves where both the algebraic equation and parametric representa-
tion is known.

• Curves where only the algebraic equation is known.

• Curves where only the parametric representation is known.

By high accuracy cubic Hermite approximation we here mean methods
that are O(h6).
In Chapter 7 these results are applied to cubic Hermite ellipse approx-

imation, with circle approximation as a special case. To illustrate the ap-
plicability of the results in Chapter 5, O(h8) circle interpolants of degree 4
are also included in Chapter 7.
Two appendices are added to relate the work to the functionality needed

in geometric modeling systems:

• The concept of PosProd Basis Functions defined in Chapter 3 is in
Appendix A discussed in relation to the B-spline and Bernstein bases.

• In Appendix B we address how a number of geometric interrogation
problems can be reformulated to manifold intersection.

1.5 Problems in Need of More Research

As stated at the start of the introduction, the topic “Intersection Algorithms
and Approximation” is so complicated that much research is still needed. As
computers grow more powerful, more complex problems can be solved, and
solutions can be more accurate. Within the topic “Intersection Algorithms
and Approximation” two of the issues still needing research attention are:
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1. “Loop elimination”. Better results are needed for predicting when the
result of an intersection cannot contain internal loops. One possible
direction to follow is bounding the partial derivatives of manifolds, as
described in [?]. Another direction is acquiring better understanding
of loop elimination when intersecting manifolds in higher dimensional
spaces than IR3.

2. “High accuracy approximation”. The main bulk of this thesis is devoted
to:

• High accuracy approximation of parametrically represented man-
ifolds by algebraic hypersurfaces.

• High accuracy approximation of algebraically represented mani-
folds by parametrically represented manifolds.

Within both of these topics there are still many unsolved problems.
My feeling is that the work in this thesis is only touching upon this
rich field of research.

13



Chapter 2

A Generic Intersection
Algorithm

A great challenge for developers of intersection algorithms is to solve the dis-
crepancy between our natural conception of an intersection, and the mathe-
matical model behind the intersection algorithms in CAGD systems.
When making an intersection algorithm for curves and surfaces, it is

easy to base the implementation on well known concepts from set theory
instead of trying to model the more inaccurate human conception of what
an intersection is. The approach based on intersection of sets, gives the
expected results when the geometries are transversal, i.e. when the objects
are not parallel in the region around the expected intersection occurrence.
However, in regions where the geometries are nonintersecting, but close and
near parallel, we want that an intersection is identified. It is easy to say that
these situations, also denoted singular and near singular, are very special
and rarely occur. This is true in CAGD systems with a user interface that
forces the user away from such situations. However, looking at shapes that
seem natural to man, they are full of surfaces touching in a singular or near
singular manner. Thus, to be able to develop more natural user interfaces, the
intersection algorithms have to support the human affection for singularities
and near singularities. It is thus natural to introduce intersection tolerances
as a basic concept in a model of the intersection problem. In Section 2.2 we
try to formulate such a model supporting tolerances. The model requires a
number of concepts from set theory. These are listed in Section 2.1 together
with concepts from differential geometry needed in later discussions.
Although intersection algorithms have to be tailored to the specific re-

quirements of an application and the dimensionality of the intersection prob-
lem at hand, a generic structure can be made for intersection algorithms
based on recursive subdivision. The only provision is that the objects to be
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intersected are closed and bounded manifolds. The structure is independent
of the dimension of the space in which the manifolds lie. The discussions in
the current chapter and the chapters following thus address, when possible,
manifolds in IRl, l ≥ 1. We impose, only when necessary, additional proper-
ties on the manifolds or require that the space in which the manifolds lie has
a certain dimension.
The basic structure of the generic intersection algorithm for two closed

and bounded manifolds A and B is as follows:

Algorithm Intersect( A, B)

Intersect(Boundary(A),B)
Intersect(A,Boundary(B))

IF
All objects resulting from the intersection
touch the boundary of A or B.

THEN

Describe the intersection results
within an appropriate tolerance,
and connect to boundary intersections.

ELSE
Subdivide A and B in an appropriate
way into smaller pieces.
For All subpieces subi(A) of A

For All subpieces subj(B) of B
Intersect(subi(A), subj(B))

Connect the results of the subproblem
intersections.

The algorithm above structures the intersection problem as a number of
subproblems:

• What is an intersection? What is the consequence of introducing in-
tersection tolerance? This is discussed in Section 2.2.

• In Section 2.5.3, we look at the intersection of a manifold with the
boundary of another manifold, and conclude that subdivision of the
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boundary is necessary in most cases. The only exception is when the
boundary consists of only single points.

• One of the most challenging problems in intersection algorithms is loop
detection; or phrased differently: Loop elimination. By this we mean
finding situations where the results of an intersection only consist of
objects touching the boundary of one of the manifolds intersected. This
is discussed in Section 2.5. We also address the possibility to reduce
the complexity of an intersection problem by combining parametric and
algebraic descriptions of manifolds.

• The representation of the results of an intersection is also an important
issue. What is represented is critical to the performance of the intersec-
tion algorithm. The introduction of intersection tolerances introduce
more complexity in the representation. This is discussed in Section
2.3. How accurately the intersection results are represented is another
problem area. This is addressed in Chapter 5.

• Strategies for subdividing an intersection problem into subproblems
are addressed in Section 2.4. The aim is to find subproblems that have
intersection results with a high probability of touching the boundary
of one of the manifolds intersected.

• Collection of the intersection results from subproblems into a complete
intersection result is mainly a software engineering problem and is not
addressed further here. However, it should be noted that what is ex-
pected to be identical results from two related subproblems, will often
be affected with different rounding errors. Thus, great care has to be
taken when designing an intersection algorithm.

In this chapter we do not address the representation of the manifolds.
The only exception is that we use the fact that both parametric and al-
gebraic descriptions exist for manifolds. Other issues related to geometry
representation are addressed in Chapter 3. The major bulk of this chapter
is published in [Dokken:97].

2.1 Basic Concepts Used

In the discussions in this chapter, we use basic concepts from set theory
and differential geometry. We do this to show that the results are valid for
a wide range of representation methods for geometric objects. Currently
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most implementations of intersection algorithms are developed for a specific
geometry representation.
We will address geometric objects with the following properties:

• Compact sets. A set is compact if it closed and bounded. A set A is
closed if and only if

¬int(¬A) = A,

where ¬A is the compliment of the set A, and int(¬A) is the internal
of the set ¬A.

• Manifold. A g dimensional manifold Mg ⊂ IRl, where l ≥ g, is a
subspace that is locally homeomorphic to IRg. That is, for every point
p of Mg, there exists a neighborhood U of p that is homeomorphic
to IRg, i.e. that there is locally continuous one to one correspondence
between the Mg and IRg. See [Hoffmann:89] page 49.

We also refer to a g dimensional manifold as a g-manifold. Thus, a
1-manifold in IR2 is a curve, and a 2-manifold in IR3 is a surface.

• Manifold with boundary. A g dimensional manifold Mg ⊂ IRl,
where l ≥ g, with boundary is a subspace whose boundary points have
neigborhoods that are homeomorphic to IRg+, the positive half-space,

IRg+ = {(x1, . . . , xg) ∈ IRg | x1 ≥ 0} ,

and whose interior points have neighborhoods that are homeomorphic
to IRg. See [Hoffmann:89] page 49.

• Differentiable manifold. A differentiable manifold of dimension g is
a set Mg and a family of injective mappings xα : Uα: → Mg of open
sets Uα of IRg such that:

1.
S

α xα(Uα) = Mg (
S

α is the union of the subsets xα(Uα) for all
α).

2. For any pair α, β with xα(Uα)
T
xβ(Uβ) =W 6= ∅, the set x−1α (W )

and x−1β (W ) are open sets in IR
g and the mapping x−1β ◦ xα is

differentiable.

The pair (Uα,xα) (or the mapping xα) with p ∈ xα(Uα) is called a para-
metrization (or system of coordinates) of Mg at p. See [do Carmo:92]
page 2.
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• Cr continuous manifold. In [Spivak:79] the concept Cr manifolds
are introduced by requiring that the functions xα and xβ have partial
derivatives that are continuous up to an order r.

We used the following concepts in these definitions:

• Homeomorphic function: A function that is one-to-one and has a con-
tinuous inverse.

• Injective function/mapping: x 6= y implies f(x) 6= f(y).

In geometry representations used in CAD/CAM and CAGD, most para-
metric representation of curves, surfaces and higher dimensional geometric
objects are both:

• g-manifolds with boundaries.

• Cr continuous manifolds.

To easily address manifolds with these properties, we make the following
definition.

Definition 1 (Cr manifolds with boundary) By “Cr manifolds with bound-
ary” we mean manifolds that:

• Satisfy the conditions of being a “g dimensional manifold with bound-
ary”.

• Satisfy the conditions for being a “Cr manifold”, for r ≥ 1.

Definition 2 (Smooth manifold) We call a “C1 manifold” a smooth man-
ifold.

2.2 Geometric Tolerance and Intersection

What do we mean when we say that two objects touch within a tolerance
� ≥ 0? Although we want to give an answer to the question for the intersec-
tion of bounded Cr manifolds with boundaries, we use in this section only
properties of closed sets. We do this to avoid introducing unnecessary details
in the discussions. The closed sets include manifolds with boundaries. Thus,
the discussion covers geometric objects that are just points, NURBS curves
with positive weights, NURBS surfaces with positive weights, bounded alge-
braically represented curves and surfaces.
The following definition is an attempt to formally define how we intu-

itively interpret an intersection.
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Figure 2.1: The �-intersection of two sets A and B, when the �-intersection
is empty. Around each point in both sets we make a hypersphere with radius
�. If this hypersphere touches the other set, an �-intersection exists.

Figure 2.2: The �-intersection of two sets A and B, when the sets nearly
touch, but have no true intersection. If the correspondence between points
in the two sets is to be represented as part of the intersection result, then
the dimensionality of the intersection result will be higher than the dimen-
sionality of the sets being intersected.
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Figure 2.3: The �-intersection of two sets A and B, when the sets have a
true intersection. In this case the true intersection is of more interest than
the �-intersection.

Definition 3 (�-intersection) The �-intersection of two closed sets A and
B in IRl is defined by

A ∩� B =
©
(p,q) ∈ IRl × IRl | p ∈ A ∧ q ∈ B ∧ kp− qk2 ≤ �

ª
.

Remark 1 For � < 0, A ∩� B is empty, which should be expected. Further
A ∩0 B = A ∩B.
In figure 2.1, figure 2.2 and figure 2.3 we visualize the �-intersection in

different situations.
To simplify the representation of intersections it is advantageous that

the result of an �-intersection is closed. The following lemma proves such a
property for the �-intersection.

Lemma 4 If A and B are closed sets, then A ∩� B is a closed set.

Proof. We have to prove that ¬int(¬ (A ∩� B)) = A ∩� B to show that
A ∩� B is closed. By ¬int(X) we mean the internal of the set X.

¬int(¬ (A ∩� B)) =
¬int(¬

©
(p,q) ∈ IRl × IRl | p ∈ A ∧ q ∈ B ∧ kp− qk2 ≤ �

ª
)

= ¬int(
©
(p,q) ∈ IRl × IRl | p ∈ ¬A ∨ q ∈ ¬B ∨ kp− qk2 > �

ª
)

= ¬
©
(p,q) ∈ IRl × IRl | p ∈ ¬A ∨ q ∈ ¬B ∨ kp− qk2 > �

ª
= A ∩� B.
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Figure 2.4: The �-intersection represented by the closest point between the
sets A and B.

The int() can be removed since the conditions p ∈ ¬A, q ∈ ¬B and
kp− qk2 > � are all conditions giving open sets, and the interior of an open
set is the open set itself.
A closed set can contain a compound of points, curves and surfaces. By

restricting the sets being intersected to contain one manifold with boundaries,
we cover the needs in CAGD.

2.3 Representation of the �-Intersection

Can the definition of the �-intersection be of practical use in intersection
algorithms? An �-intersection can consist of disjoint regions, and contain
manifolds of higher dimension than the manifolds being intersected. To ad-
dress these issues we introduce:

• The separated �-intersection to split the intersection results into disjoint
subsets.

• The reduced separated �-intersection. A first alternative to reduce the
dimension of the manifolds representing the separated �-intersection.

• The projected separated �-intersection. A second alternative for re-
ducing the dimension of the manifolds representing the separated �-
intersection.
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As stated above, we shall first address the representation of the inter-
section A ∩� B. Let the set A consist of one closed and bounded manifold
of dimension gA, and the set B consist of one closed and bounded manifold
of dimension gB. The set A ∩� B consists of one or more possibly touching
closed and bounded manifolds of dimension g (the g can be different for each
of the manifolds describing the intersection), where g = 0, . . . , gA + gB. In
non-manifold solid modeling, see [Weiler:86], topological data structures are
built representing the connectivity between manifolds of different dimensions,
as well as data structures for representing each manifold.
To separate non-connected manifolds we want to split the intersection set

into disjoint intersection subsets.

Definition 5 (Separated �-Intersection) Let A∩�B be the �-intersection
of A and B. The separated �-intersections of A and B are set (A ∩� B)i,
i = 1, . . . , N� that satisfy

A ∩� B =
N�[
i=1

(A ∩� B)i ∧
N�[

i, j = 1
i 6= j

³
(A ∩� B)i ∩ (A ∩� B)j

´
= ∅,

where (A ∩� B)i, i = 1, . . . , N� cannot be separated into disjoint subsets.

Now we face the practical problem of the representation of each subset in
the separated �-intersection.

Example 6 Let A and B be two nondegenerate C1-continuous NURBS sur-
faces in IR3, each of the NURBS surfaces is a bounded 2-manifold with bound-
aries. The �-intersection of A and B, and the separated �-intersection contain
one or more of possibly intersecting 0-manifolds, 1-manifolds, 2-manifolds,
3-manifolds and 4-manifolds.

The reason for introducing the tolerances was to treat as intersections
cases where the objects do not intersect, but where the distance between the
objects is so small that for practical purposes we should handle the case as an
intersection. Thus, we are not interested in the complete description of the �-
intersection, but interested in the fact that we have an intersection or a near
intersection. We want to find a practical way of representing the surface
intersection in example 6 with manifolds with dimension g = 0, 1, 2. In a
general case, when we intersect a manifold of dimension gA with a manifold
of dimension gB, we want the intersection to be represented by a set of
manifolds where the dimension of the manifolds is less than min(gA, gB).
As stated in the start of the section two alternatives for a reduced repre-

sentation are:
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Figure 2.5: The boundary of the �-intersection projected onto the sets A and
B, assuming that the sets are in IR2. Note that the pointwise correspondence
between the points is lost by this projection. If the sets A and B are 2-
manifolds in IR3, then the projection of the intersection set onto the objects
will be 2-manifolds and the boundary of the projected intersection sets will be
the intersection sets themselves. However, the boundary of the two manifolds
representing the projected intersection set will be the curves depicted.

1. If there is an intersection when � = 0 in the disjoint subset, use the
intersection as the representation of the disjoint subset. If no such
intersection exists use the closest points.

2. Use the border of the projection of the disjoint subset onto object A,
and the border of the projection of the disjoint subset onto object B.

Which alternative to chose for the implementation of an intersection algo-
rithm is dependent on the actual requirements to the intersection problems
being solved. To cater for the needs in the first alternative, we need a set of
closest points within each of the subsets of the separated �-intersection.

Definition 7 (Closest points in separated �-intersection) We define the
set of closest points in the disjoint subsets of the separated �-intersection by

C�,i = {(a,b) ∈ (A ∩� B)i | ka− bk2 = min
(x,y)∈(A∩�B)i

kx− yk2}.

Now we are able to define a reduced �-intersection, thus covering the first
alternative in the list.
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Definition 8 (Reduced Separated �-Intersection) We define the reduced
version of the disjoint subsets of the separated �-intersection by

R�,i =

½
(A ∩B) ∩ (A ∩� B)i if (A ∩B) ∩ (A ∩� B)i 6= ∅

C�,i if (A ∩B) ∩ (A ∩� B)i = ∅

for
i = 1, . . . , N�.

As already mentioned, the reduced separated �-intersection can have a
complex topological structure, e.g. in surface intersection a number of inter-
section curves can meet in a point, or surface regions can meet other regions
or curves in single points.
To cover the second item in the list we first make a projection of the

separated �-intersection (A ∩� B)i, i = 1, . . . , N� onto set A and set B. Then
we address the boundaries of these projections.

Definition 9 (Projected Separated �-Intersection) We define the pro-
jection of the disjoint subsets of the separated �-intersection by

(A ∩� B)Ai = {p ∈ A | (p,q) ∈ (A ∩� B)i} , i = 1, . . . , N�

(A ∩� B)Bi = {q ∈ B | (p,q) ∈ (A ∩� B)i} , i = 1, . . . , N�.

Remark 2 By the projection we loose the correspondence between the points
in set A and B taking part in the intersection. The correspondence is in gen-
eral not one to one, thus the storage and handling of such a correspondence
is not a trivial task.

Since (A ∩� B)i are closed sets, the projected sets must be closed sets.
Thus, the intersection can be represented by the boundary of these sets.

Definition 10 The Boundary of the Projected Separated �-Intersection is
defined by

B (A ∩� B)Ai = (A ∩� B)Ai − int((A ∩� B)Ai ), i = 1, . . . , N�

B (A ∩� B)Bi = (A ∩� B)Bi − int((A ∩� B)Bi ), i = 1, . . . , N�.

Remark 3 Here it is important to distinguish the boundary of the projected
separated �-intersection in IRl from the boundary of the manifolds describ-
ing each projected separated �-intersection. E.g. a projected separated �-
intersection in IR3 can consist of a complete circle. The boundary of the
circle in IR3 is the circle itself. However, the circle as a manifold has no
boundary since no point on the circle is locally homeomorphic to IR+.
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2.4 Finding all Intersection Occurrences

In definition 5 we introduced the disjoint separated �-intersection. However,
we did not discuss any method for singling out the disjoint subsets. The main
strategy employed to solve such problems is divide and conquer. However, to
make a successful divide and conquer strategy we have to solve the following
problems:

• Decide if two objects have a guaranteed intersection, a possible inter-
section or no intersection. This is addressed in sections 2.4.1 and 2.4.3.

• Decide how to split an �-intersection into possible disjoint subsets. This
is addressed in Section 2.4.2 and Section 2.4.5.

• Identification of a disjoint subset in the separated �-intersection. This
is addressed in Section 2.4.4.

• To decide when a disjoint subset in the separated �-intersection consists
of only one bounded manifold, or of touching bounded manifolds of
possibly different dimensions. This is crucial for the representation of
the intersection, and is addressed in Section 2.4.6.

• To decide if all disjoint subsets in the separated �-intersection set touch
the boundary of one of the objects being intersected. This can reduce
the problem to intersecting the boundaries of each of the sets with the
other set. This is addressed in Section 2.5.

When we introduced the reduced separated �-intersection in definition 8,
and the boundary of the disjoint subsets of projected separated �-intersection
in definition 10, we did not address the internal topology of these sets. This
can in the case of surface intersection consist of one or more points, curves
and surfaces regions. A divide and conquer strategy can be employed when
sorting out the topology of each disjoint subset of a projected separated �-
intersection. The divide and conquer strategy is in general successful since
it is possible to position a subdivision border between the curves/regions.
However, when curves and/or regions meet, the subdivision has to go through
the points where the curve(s) and/or regions meet. The orientation of the
subdivision border is crucial to the success of the divide and conquer strategy.
An other challenge is that between a situations where it is obvious that

the �-intersection can be split into disjoint subsets, and situations where the
�-intersection cannot be split, there are cases where a minor pertubation
makes the subsets touch. Some algorithmic approaches detect in such cases
a separation, while other algorithmic approaches detect no separation in
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the same situations. The reason for such differences can be the nature of
propagation of rounding errors in different algorithms.
The concepts of absolute and relative rounding errors, error propagation,

algorithms minimizing rounding errors and the best representation formats
with respect to rounding error, play a central role to minimize the size of
the regions where decisions are difficult to make. The divide and conquer
strategy is not efficient in such regions.

2.4.1 Spatial Separation with Respect to a Tolerance

The detection of just one intersection point between two sets establish the
fact that the two sets intersect. Thus, strategies than can detect some inter-
section point are of great value in the intersection process. By intersecting
the boundary of a compact set A with a compact set B, and the boundary of
B with A, we detect a subset of the intersection. When we later on want to
represent the intersection result, these boundary intersections would be nat-
ural to use as candidates in the intersection representation. The boundary
points are also important since we can use a recursive subdivision strategy
to isolate regions where the intersection consists of manifolds that touch the
boundary of a closed and bounded smooth manifold, as described in Section
2.5.
A number of different techniques exists for deciding if two objects are

spatially separated. Two main approaches exist:

• Bounding each of the objects by a simpler geometry and checking if
these bounding geometries intersect.

• Separating the objects by a geometric object.

In general a coarse bounding geometry is faster to calculate than a fine
bounding geometry. When comparing two bounding geometries the complex-
ity of the bounding objects has significant influence on the performance of
the test.
The most commonly used bounding geometries are:

• Axis-Parallel Boxes. In IR these are intervals; in IR2 axis parallel rec-
tangles; in IR3 axis parallel rectangular boxes; and in IRl l-dimensional
axis parallel boxes.

Axis parallel boxes are easy to calculate for NURBS represented geome-
tries with positive weights, as the geometry is limited by the projection
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of the vertices from the projective space to the affine space. Alge-
braically represented geometries are in the general case infinite. How-
ever, if they are represented in barycentric coordinates, the corners of
the barycentric coordinate system describe a triangle in IR2, a tetra-
hedral in IR3, and a l-simplex in IRl. By applying the convention that
the part of algebraic geometry of interest is inside the l-simplex, the
problem is reduced to checking:

— If two simplices are closer than the tolerance �.

— If a simplex and a box is closer than the tolerance �.

— If two axis parallel boxes are closer than the tolerance �.

• Boxes with Fixed Rotation. Naturally the axis parallel boxes are
well behaved for geometries that are axis parallel. However, if the geom-
etry is non-axis parallel, then these boxes are a very coarse bounding
geometry. Making boxes from all possible rotations of the coordinate
main axis by 45 degrees is computationally inexpensive, and handles
many of the non-axis parallel situations well.

• Convex Hulls. An alternative bounding geometry for a NURBS curve
or NURBS surface with positive weights is to calculate a convex hull
of the control polygon. The calculation requires more operations than
calculating the bounding boxes, and the comparison of two convex hulls
is more computational demanding than comparison of boxes.

We can use algebraically represented geometries to separate two manifolds
of possibly different dimensions.

• Separation by Algebraic Hypersurface. Let two manifolds be A
and B, and let an algebraically represented hypersurface be q(x) = 0.
If we have that:

∀(pA,pB) ∈ A×B : q(pA) ≥ 0 ∧ q(pB) < 0,

then the objects are non-overlapping. Taking then an overlap within a
tolerance �q > 0 into consideration. We have to satisfy the equation

∀(pA,pB) ∈ A×B : q(pA) ≥ �q ∧ q(pB) ≤ −�q

to guarantee separation. The value of �q has to be calculated from the
behavior of q(x) in the region around setA and setB. The hypersurface
can be a plane; another hypersurface; a hypersurface containing the
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manifold A; a hypersurface approximating the manifold A. In Chapter
4 we enter into details of such approximative implicitization. In Section
4.11 we look at more details on using an algebraic surface for separating
two manifolds.

In [Hohmeyer:92] the separation of objects was divided into spatial sepa-
rability and spherical separability, the former consisting of bounding boxes,
bounding planes, separating planes; the latter including spherical bounding
boxes and separating circles. We see that all these concepts are included in
the list above.

2.4.2 Subdividing �-Intersections into Disjoint Subsets

Depending on the representation format of the manifolds, more or less nu-
meric stable and efficient subdivision algorithms exist. For subdividing ob-
jects represented with the Bernstein basis, the de Casteljau algorithm is the
obvious choice [Farin:92]. For subdividing B-spline represented objects the
“Oslo algorithm” is to be preferred based on the numerical stability of the
knot insertion scheme [Fuggeli:93].
For algebraically represented geometry, a de Casteljau algorithm can be

used for subdividing, provided that a Bernstein basis in barycentric coordi-
nates is used. The part of the algebraic surface of interest is supposed to be
inside the simplex defining the barycentric coordinate system.
The main challenge in the subdivision process is to decide where to split

the objects. The simplest strategies are:

• For a parametric (tensor product) NURBS represented geometry with
internal knot(line)s, split at an internal knot(line).

• For a parametric rational (tensor product) Bernstein (B-spline with no
internal knot(line)s) represented geometry, split at the midpoint.

• For a barycentric Bernstein basis represented geometry, split at the
middle of the barycentric coordinate system. E.g. for a barycentric co-
ordinate system in IRl split at the midpoint: The point with barycentric
coordinates ( 1

l+1
, . . . , 1

l+1
).

• After reading these thesis Prof. T. W. Sederberg pointed out that a bet-
ter strategy for subdividing a barycentric Bernstein basis represented
triangle is to split the triangle into four triangles.
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These strategies do not take into consideration the actual geometric prob-
lem to be solved. By doing this more optimal points for subdivision can be
found.
The identification of a disjoint subset of a separated �-intersection is a

non-trivial task. The set can have a complicated geometric description. It
can be necessary to break the intersection result into smaller pieces before we
can identify a piece as a piece of a disjoint subset of a separated �-intersection.
A strategy that can be employed is to subdivide the sets A and B into

subsets having a “monotonous” behavior with respect to each other. Thus,
we have to identify how to subdivide the sets to get subsets that are more
“monotonous” with respect to each other than the original sets A and B.
One approach is to subdivide sets A and B at local minimal points with
respect to the distance function. Another approach is to subdivide the set
A in its internal local maximal points with respect to B and the set B in its
internal local maximal points with respect to A. These issues are addressed
in respectively subsections 2.4.3 and 2.4.4 following.

2.4.3 Subdivision at Points with Minimal Distance

By subdividing at local minimum points of the distance function, we can get
different effects.

• In theorem 14 and corollary 15 in Section 2.5.2 we develop a result that
identifies intersection situations, where all objects in the intersection
touch a boundary of one of the closed and bounded manifolds being
intersected. The theorem allows singular intersection points at the
boundaries of the manifolds being intersected. It thus supports subdi-
vision in local closest points. Subdivision in these points is, provided
the manifolds being intersected are smooth, a strategy for bringing sin-
gular points or near singular points to the boundary of submanifolds
of the manifolds being intersected. By singular points in an intersec-
tion we mean points in the intersection with parallel normals. By near
singular points we mean point pairs in the �-intersection with parallel
normals.

• By subdividing at local closest points that are separated more than the
geometric tolerance �, we can exclude regions of the manifolds that are
further apart than �.
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Figure 2.6: Example of local closest points between two curves. Closest
points where the curves intersect are marked with a gray disk. Noncoinci-
dent local closest points are connected by a dashed line. Splitting of the
curves at corresponding closest points can be used to exclude regions form
the �-intersection. Splitting at coincident closest points can bring intersec-
tion points to the boundary of submanifolds, then those can be analyzed to
find the structure of the intersection set.

The local closest points are defined by the set Smin(�) where the tolerance
� is a tool for eliminating points lying inside the user defined tolerance.

Smin(�) = {(p,q) ∈ A×B | ∃δ > 0 :
� < kp− qk2 ≤ min

p0∈A∩B(p,δ)∧q0∈B∩B(q,δ)
kp0 − q0k2}.

The open ball B(p, r) is defined by B(p, r) = {y | kp− yk2 < r}.

2.4.4 Subdivision at Points with Maximal Distance

The Hausdorff distance d(A,B) between two compact sets A,B ⊂ IRl defines
the global maximal points between the two sets. The distance is in [Degen:92]
defined by

d(A,B) := max(max
p∈A

(min
q∈B

kp− qk2),maxq∈B
(min
p∈A

kp− qk2)). (2.1)

We now intend to find points in the two sets that can be called local
maximal points. The set of these points will be denoted Imax(A,B). Looking
at (2.1) we see that the outer maximum is over two expressions where the
sets A and B change roles. We take the first of these,

max
p∈A

(min
q∈B

kp− qk2), (2.2)
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and get a simpler expression. However, the roles of A and B are no longer
symmetric. We are still finding the “max min” values over the entire sets A
and B. To make the “max min” values local, we can limit the part of A and
B used. A way of doing this is to use the following way for defining subsets:

• A subset of A defined by A ∩ B(p, δ) where p ∈ A and δ > 0.

• A subset of B defined by B ∩ B(q, δ) where q ∈ B and δ > 0.

Here B(x, r) is an open ball defined by

B(x, r) = {y | kx− yk2 < r} .

We require that an element in Imax(A,B) is related to the expression

max
p0∈ A∩B(p,δ)

min
q0∈ B∩B(q,δ)

kp0 − q0k2 . (2.3)

Since we use open balls it is easy to find combinations of p, q and δ that
make (2.3) define no value. However, when (2.3) defines a value we have
found a local maximal point in set A with respect to B. The actual location
is so far not identified. The next step is thus to link the local maximal points
to p and q. First we link p to the maximum in (2.3) by requiring

min
q0∈ B∩B(q,δ)

kp− q0k2 = max
p0∈ A∩B(p,δ)

min
q0∈ B∩B(q,δ)

kp0 − q0k2}.

When (2.3) defines a value, the expression above must be true for some
p ∈ A. Now we link q to the maximum by requiring

kp− qk2 = min
q0∈ B∩B(q,δ)

kp− q0k2 = max
p0∈ A∩B(p,δ)

min
q0∈ B∩B(q,δ)

kp0 − q0k2}.

When (2.3) defines a value, the expression above must be true for some
q ∈ B.
Thus, we have an expression that describes the properties of what we

want to denote “Local maximal points of a set A with respect to a set B”.

Definition 11 (Local Maximal Points.) Let A and B be two compact
sets. The set of Local Maximal Points of A with respect to B is defined
by

Imax(A,B) = {(p,q) ∈ A×B | ∃δ > 0 : kp− qk2 =
min

q0∈ B∩B(q,δ)
kp− q0k2 = max

p0∈ A∩B(p,δ)
min

q0∈ B∩B(q,δ)
kp0 − q0k2}.
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Figure 2.7: The local maximal points Imax(A,B) of set (curve) A with respect
to set (curve) B. The arrows point at points of curve B. Note that only one
end point of A is included. Let a point move along curve A from left to right.
At the left end, where the point moves away from curve B, the endpoint
is excluded. Then a point moves along curve A from right to left. At the
right end, where the point move closer to curve B, the end point is included.
The radius of curvature of curve B is infinite, and is thus greater than the
distance to curve A. Hence for every point on curve A, only one point on
curve B is included.

Figure 2.8: The local maximal points Imax(B,A) of set (curve)B with respect
to set (curve) A. The arrows point at points of curve A. Note that both
end points of B are included, one corresponding to an end of A the other
corresponding to an internal point on A. Also note that to some of the points
on B two points correspond on curve A.
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Remark 4 It is important to note than in general Imax(A,B) 6= Imax(B,A).

Remark 5 If the set B is a smooth manifold, and (p,q) ∈ Imax(A,B), then
the vector p − q is orthogonal to the tangent bundle of B at the point q,
provided q is an internal point in B. This is used in the examples in figure
2.7 and in figure 2.8.

Example 12 Let A have the shape of a ∪ and let B be a bar ¯ above the ∪.
The intersection problem looks like: ∪̄ . Now Imax(A,B) contains the bottom
of the ∪ paired with the middle point of the bar, while Imax(B,A) contains
the middle point of the bar paired with the end points of ∪.

There are two possible applications for the local maximal points between
the two compact sets.

• Let (p,q) ∈ Imax(A,B), and let kp− qk2 ≤ �, where � ≥ 0 is the
intersection tolerance, then we can find an open ball B(p, δ) around p
with radius δ and a ball B(q, δ) around q with radius δ such that

max
p0∈A∩B(p,δ)

min
q0∈B∩B(q,δ)

kp0 − q0k2 ≤ �,

i.e. we have detected a part of an �-intersection.

• Let (p,q) ∈ Imax(A,B), and let kp− qk2 > �, where � ≥ 0 is the
intersection tolerance, then we can find an open ball B(p, δ) around p
with radius δ and a ball B(q, δ) around q with radius δ such that

max
p0∈A∩B(p,δ)

min
q0∈B∩B(q,δ)

kp0 − q0k2 > �,

i.e. we have detected a region that is not part of the �-intersection.
Subdividing the set A through p and the set B through q may divide
the intersection result into two disjoint sets.

2.4.5 Orientation of the Subdivision Borders

Some of the candidate points for locating the subdivision borders can be on
the boundary of a manifold. When subdividing in those points, we have to
select subdivisions that produce subsets.
An aspect to take into consideration when subdividing objects is the ori-

entation of the subdivision borders. Using the standard recursive subdivision
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techniques the shape of the subdivision borders are hyperplanes in the pa-
rameter domain of the parametric geometries, or hyperplanes in IRl for the
algebraically represented geometries. The actual orientation of these hyper-
planes, plays a central role in making a successful subdivision. In the tensor
product parametric case it is efficient, in some cases, to convert to a paramet-
ric barycentric representation. In the barycentric representation it is easier
to make an optimal orientation of subdivision borders.

2.4.6 Separating Connected Intersection Regions

Now assume that we have a separated �-intersection that consists of a set
of connected intersection regions that cannot be described by a single mani-
fold. We want to describe each intersection region by a bounded manifold of
dimension g , g > 0, each region can have different values for g.
Thus, we search for boundary points in respectively (A ∩B)Ai , (A ∩B)Bi

and R�,i, i = 1, . . . , N� that are not homeomorphic to IRg+, g ∈ IN. We
subdivide the problem in such points to make intersection objects that only
contain manifold geometries.
Since we have introduced two reduced representations for the separated

�-intersection, we must expect that the intersection geometry and topology
for the two alternatives in many cases are different.

2.5 Loop Elimination

In the previous section we proposed different strategies for deciding where to
subdivide two objects being intersected to get smaller and possibly simpler
intersection problems. We proposed to subdivide in singular or near singular
points and in points that would give the subsets a more monotonic behavior
with respect to each other. Now we analyze intersection (sub)problems. The
intention is to find situations when all objects in the intersection result touch
the boundary of one of the objects being intersected. When this is the case
we find points on all intersection objects by just intersecting the boundary
of each set with the other set. It is assumed in the rest of the section that
the sets intersected are smooth bounded manifolds with a boundary.
The smoothness requirement is necessary since the relative orientation of

the geometries is essential to the results presented. The section is structured
as follows:

• The normal set, which is used to describe the orientation of a manifold,
is addressed in Subsection 2.5.1.
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• In Subsection 2.5.2, theorem 14, we establish conditions identifying
when n smooth closed and bounded (l−1)-manifolds in IRl intersect in
objects that touch the boundary of one of the (l− 1)-manifolds. Then
we look at uses of the theorem.

• In Subsection 2.5.3, we show that the boundaries of a manifold have
to be split into pieces, to find the number of intersection objects along
the boundary.

• Then, in Subsection 2.5.4, we find sufficient conditions for identifying
nonsingular points in the intersection of l smooth (l − 1)-manifolds in
IRl.

• The potential of combining algebraically represented hypersurfaces with
a manifold is discussed in Subsection 2.5.5.

2.5.1 The Set of Normals

In order to discuss the relative orientation of manifolds, we have to be able to
describe the orientation of each of the manifolds involved in the intersection.
For curve segments in IR3 the orientation at a point is related to the curve
tangent at that point. The orientation of the curve is described by the
possible tangent directions of the curve segment. The orientation of higher
dimensional manifolds is in a similar way described by tangent bundles.
Let A be a smooth manifold, then to every point p ∈ A, a tangent bundle

tp, is associated. The tangent bundle is spanned by the first order partial
derivatives of the parametrization of A at p. However, we prefer to use
normals of the manifold to describe the orientation and thus introduce the
concept of the Normal Set.

Definition 13 (Normal Set) The set of normals N (A) of A, a smooth
manifold of dimension g in IRl, is defined by

N (A) = {q ∈ IRl | kqk2 = 1 ∧ q ⊥ tp, p ∈ A}.

where tp is the tangent bundle of A at p.

What is the consequence of this definition? For a bounded l-manifold in
IRl, the normal set is empty. For a plane in IR3 the normal set consists of
the positive and negative unit normal vectors to the plane. For a sphere the
normal set is the entire Gaussian Sphere.
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2.5.2 Intersections Touching the Boundaries

In [Hohmeyer:92] a theorem was presented for singling out situations where
the intersection between two surfaces in IR3 has no internal closed curves.
The theorem was a significant improvement over the previous work available.
In [Hohmeyer:92] an extensive survey of previous work was given including
[Dokken:90], [Kriezes:90-1], [Kriezes:90-2], [Kriezes:91], [Mountaudouin:89],
[Sederberg:88], [Sederberg:89-1] and [Sinha:85]. Recent work can be found
in [?], [Krishnan:96] and [?]. The following theorem addresses the situation
when n manifolds in IRl of dimension (l − 1) are intersected. The theorem
allows singular intersection points on the boundary of the manifolds being
intersected. In [Hohmeyer:92] all intersection points on the boundaries had
to be nonsingular.

Theorem 14 Let An = {Ai}ni=1 be a set of bounded smooth (l−1)-manifolds
with boundary in IRl, l > n > 1. If n1, . . . ,nn are linearly independent, and
linearly independent from a vector v for any ni ∈ N (int(Ai)), i = 1, . . . , n,
then

• All r-manifolds r 6= l− n and r < l− 1 in the intersection between the
manifolds in An are at the boundaries of one of Ai, i = 1, . . . , n.

• The intersection geometries in the internal of the intersection between
the manifolds in An are (l−n)-manifolds that intersect the boundary of
one of Ai, i = 1, . . . , n. I.e. the (l− n)-manifolds do not form internal
loops.

If n1, . . . ,nn are linearly independent, and linearly independent from a
vector v for any ni ∈ N (Ai), i = 1, . . . , n, then all intersections are r-
manifolds r ≤ l − n.

Proof. If the smooth (l − 1)-manifolds intersect in a r-manifold, r > l − n
and the r-manifold is interior to all the smooth (l−1)-manifolds, then at each
point of the intersection the normals of at least two of the l−1manifolds have
to be linearly dependent. This contradicts the assumption that n1, . . . ,nn
are linearly independent for any ni ∈ N (int(Ai)), i = 1, . . . , n.
Assume that a r-manifold r < l−n is an intersection and is interior to all

the smooth l− 1 manifolds. In a neighborhood of an intersection point p all
the (l− 1)-manifolds Ai, i = 1, . . . , n can be approximated with hyperplanes
through the point p with normals taken from the respective (l−1) manifolds.
These hyperplanes intersect in a (l−n)-manifold since the normals are linearly
independent. Since all (l − 1)-manifolds are smooth, there is a small region
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around p where the intersection is a l − n manifold. Thus, the intersection
cannot be an isolated r-manifold, r ≤ l − n− 1.
Assume that the intersection consists of a bounded (l − n)-manifold not

touching the boundaries of any Ai, i = 1, . . . , n. The (l − n)-manifold is
smooth since all Ai, i = 1, . . . , n are smooth and the normal sets are linearly
independent. Now choose the direction vector v that is supposed to be
linearly dependent from any ni ∈ N (Ai), i = 1, . . . , n. Since the (l − n)-
manifold is smooth we can find a hyperplane that is normal to v and tangent
to the (l − n) manifold at some tangent point pT .
To analyze the tangent bundle at pT , we make a hyperplane hv through

the origin with normal vector v. The tangent(bundle) at pT has to lie in this
hyperplane. Looking at which normals of Ai, i = 1, . . . , n that can make
a tangent(bundle) in the hyperplane hv, we see that the tangent bundle is
spanned by (l − n) linearly independent vectors, the vectors normal to the
tangent bundle have to lie in a linear n-manifold. We know that v is one
vector in this n-manifold. The linear n-manifold can thus only interpolate
(n − 1) of the n-normal vectors, since the n normal vectors are linearly
independent from v. This implies that the tangent bundle cannot be defined
from the normal vectors ni ∈ N (Ai), i = 1, . . . , n, and contradicts that pT
lies on the (l− n)-manifold in the intersection. Thus, it is impossible for the
(l − n)-manifold to not touch the boundary.
If the normals set are linearly independent also on the boundaries of

the manifolds, then all intersections of the manifolds are r-manifolds with
r ≤ l − n.

Remark 6 Since a g-manifold g ≤ l− 2 can be described as the intersection
of g manifolds of dimension (l − 1), the theorem is also relevant for the
intersection of manifolds with lower dimension than l − 1.

Remark 7 The use of theorem 14 for values of n > 2 requires efficient
algorithms for determining the linear independence of (l − n) normal sets,
and to decide if there exists a direction v not spanned by the normal sets.

In the case n = 2 the corollary following is dealing with the intersection
of two (l−1)-manifolds in IRl. It states that if the normal sets in the interior
of the manifolds can be separated by two planes, then all intersection curves
touch the boundary of one of the manifolds. A remark then follows concerning
the intersection of two surfaces (2-manifolds) in IR3.

Corollary 15 Let two hyperplanes in IRl through the origin be defined by the
normal vectors b1 and b2. Let A1 and A2 be bounded smooth (l−1)-manifolds
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with boundary in IRl, l > 2. If the normal sets of int(A1) and int(A2) can
be separated by two hyperplanes i.e.

∀n1 ∈ N (int(A1)) ∧ ∀n2 ∈ N (int(A2)) :
(b1 · n1)(b2 · n1) > 0 ∧ (b1 · n2)(b2 · n2) < 0,

then

• All r-manifolds r ≤ l− 3 in the intersection set between A1 and A2 are
at the boundary of A1 or A2.

• The intersection geometries in the internal of A1 and A2 are (l − 2)-
manifolds that intersect the boundary of A1 or A2. E.g. the (l − 2)-
manifolds do not form internal loops.

Proof. Unit vectors lying in the intersection of the two hyperplanes are
linearly independent of the normal sets. Thus, the requirements of theorem
14 are satisfied.

Remark 8 The theorem in [Hohmeyer:92] used two planes going through the
origin to separate the normal sets of two surfaces in IR3, and thus to assure
that they are linearly independent, this is corollary 15 for l = 3 and n = 2.
Corollary 15 is a more general result than the theorem in [Hohmeyer:92] since
corollary 15 allows for parallel normal vectors, if they are at the boundary of a
manifold. The distinction is important since corollary 15 gives the possibility
for subdividing manifolds at points where the normals of the manifolds are
parallel. Thus, the probability of creating subproblems of the intersection,
where all objects in the intersection result touch the boundary, is increased.

The next corollary addresses situations where we can find linear inde-
pendence between a vector v and only a subset of the normals sets of the
(l − 1)-manifolds being intersected.

Corollary 16 Let An = {Ai}ni=1 be a set of closed and bounded smooth (l−
1)-manifolds in IRl, l > 2. Let An,r = {Ai(j)}rj=1 be a subset of An satisfying:
n1, . . . ,nr are linearly independent, and linearly independent from a vector v
for ∀nj ∈ N (int(Ai(j))), j = 1, . . . , r, then the internal intersections lie on
(l − r)-manifolds that touch the boundaries, and result from the intersection
of the manifolds in An,r.
Proof. The intersection of the manifolds in An is a subset of the intersection
of the manifolds of An,r. For An,r theorem 14 can be applied.
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Remark 9 The corollary can be used for identifying the possible location of
intersection objects, when the linear independence of the normal vectors and
the direction v is not established for the complete intersection problem, but
can be established for a subset of the set of manifolds. Thus, regions where
no intersection objects exist can be excluded by analyzing the intersection of
these subsets.

Example 17 Let p(s, t), (s, t) ∈ Ω be a smooth surface with positive weights
in IR3, where Ω is a rectangle in IR2, and let a straight line be described by
the intersection of the two planes q1(x) = 0 and q2(x) = 0. Define three
2-manifolds in IR3 by

A1 = {(s, t, q1(p(s, t))), (s, t) ∈ Ω}
A2 = {(s, t, q2(p(s, t))), (s, t) ∈ Ω}
A3 = {(s, t, 0), (s, t) ∈ Ω}.

(2.4)

The intersection of the three manifolds A1, A2 and A3 is equivalent to the
intersection of the surface and the straight line. In theorem 23 in Subsection
2.5.4 conditions for when an intersection results in nonsingular points are
given. If a possible singular situation arise, corollary 16 can be used for
looking at the three intersection problems A1 ∩ A2, A1 ∩ A3 and A2 ∩ A3 to
establish the possible location of the intersection result.

In the following example we create an intersection between a straight line
and a ruled surface resulting in a singular situation.

Example 18 Let the surface p(s, t) be a ruled surface in IR3 defined by the
two curves p(s, 0) and p(s, 1) i.e.

p(s, t) = (1− t)p(s, 0) + tp(s, 1), (s, t) ∈ [smin, smax]× [0, 1].

Let p(c, t), c ∈ [smin, smax] denote a straight line. Let q1(x) = 0 and q2(x) = 0
be the algebraic description of two noncoincident planes intersecting along
p(c, t). The intersection problem can be formulated as (2.4) and is singular.
Provided the two curves p(s, 0) and p(s, 1) do not intersect, the intersec-
tion curve p(c, t), c ∈ [smin, smax] is nonsingular in at least two of the three
intersection problems A1 ∩A2, A1 ∩A3 and A2 ∩A3.

In the following corollary we apply theorem 14 to a smooth function in
g-variables, defined over a compact domain Ω, to establish conditions when
the zeroes of the function lie on a (g− 1)-manifold that touch the boundary
of Ω.
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Corollary 19 Let Ω ∈ IRg, g > 1 denote a compact set, and let f denote a
C1 continuous function f : Ω→ IR satisfying for some d ∈ IRg

d · ( ∂f
∂s1

, . . . ,
∂f

∂sg
) > 0, (s1, . . . , sg) ∈ int(Ω). (2.5)

Then the set of zeroes of f

IΩ = {(s1, . . . , sg) ∈ Ω | f(s1, . . . , sg) = 0}

satisfies

• All manifolds of dimension p < g − 1 in IΩ are at the boundary of Ω.

• The manifolds in IΩ in the internal of Ω have dimension (g − 1), and
intersect the boundary of Ω. I.e. the (g − 1)-manifolds do not form
internal loops.

Proof. We convert the problem to a (g+1) dimensional problem by defining
two g-manifolds for (s1, . . . , sg) ∈ Ω

f0(s1, . . . , sg) = (s1, . . . , sg, 0)

f1(s1, . . . , sg) = (s1, . . . , sg, f(s1, . . . , sg)).

The internal normal set of f0 and f1 are:

N (int(f0)) = (0, 1)

N (int(f1)) = {(∇f(s1, . . . , sl), 1) | (s1, . . . , sl) ∈ int(Ω)}.

By assumption (2.5), vectors from the two normal sets, are linearly indepen-
dent. Further vectors in the intersection of:

• The hyperplane normal to (d, 0) through the origin,

• The hyperplane normal to (0, . . . , 0, 1) through the origin,

cannot be made by a linear combination of the two normal sets. Thus, a
vector v exists linearly independent from N (int(f0)) and N (int(f1)) and the
conditions of theorem 14 are met.
Now the question is the practical construction of the vector d in the

corollary above.
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Example 20 Assume that the function f is described as a NURBS function.
∂f(s,t)
∂s

and ∂f(s,t)
∂t

are then NURBS functions. Thus, (∂f(s,t)
∂s

, ∂f(s,t)
∂t
) is a convex

combinations (provide positive weights) of a set of 2D vectors. Adding these,
or their normalized version, gives a dominant direction of (∂f(s,t)

∂s
, ∂f(s,t)

∂t
). In

case the sum is zero, the vectors cannot be located at one side of a line through
the origin, and the separation is impossible. Given the dominant direction
we can calculate a “direction” cone of (∂f(s,t)

∂s
, ∂f(s,t)

∂t
). If the opening of the

direction cone is less than π, we have obtained the required separation.

Example 21 Let p(s, t), (s, t) ∈ Ω denote a NURBS surface with positive
weights in IR3, that is to be intersected with an algebraic surface q(x) = 0. The
function q(p(s, t)) is of the type described in corollary 19. Corollary 19 can
thus be used for identifying situations where all intersections of p(s, t), and
the algebraic surface q(x) = 0, in the internal of Ω, are curves (1-manifolds)
that touch the boundary of Ω.

In appendix B other problems where corollary 19 can be used are dis-
cussed.

2.5.3 Boundary Subdivision Necessary

In theorem 14 conditions were established for identifying situations when
intersection results touch the boundary of one of the closed and bounded
smooth manifold intersected. Thus, in such situations, we can look at the
behavior of the boundary of a manifold, to describe the intersection results.

Theorem 22 Let A be a closed and bounded smooth manifold with a smooth
boundary denoted B. Then the Normal Set from (see definition 13) of the
boundary B denoted, N (B) spans the entire Gaussian sphere.

Proof. Assume that there is a direction v /∈ N (B), i.e. v is not in the
normal set of the boundary B. Make a hyperplane with normal vector v
that do not touch B. By translation of the hyperplane we can bring it
to a position where the hyperplane just touch the boundary B. Since B is
smooth the hyperplane is tangential to B and v must be in the N (B). Thus,
contradicting that v /∈ N (B).

Remark 10 Often the boundary of a closed and bounded smooth manifold
is not smooth. By smoothing out regions on the boundary, where the tangent
bundle has breaks, we get a manifold with a smooth boundary, and theorem
22 can be used. Thus, it is natural to define the normal set of the boundary
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of a closed and bounded smooth manifold as the entire Gaussian Sphere. The
consequence is that the normal set contains no information on the orientation
of the boundary. For use in intersection algorithms, the boundary has to be
split into pieces, for the normal set to be of practical use.

A tensor product surface has a rectangular parameter domain. Thus, a
first choice is to split the boundary into the four curves corresponding to the
straight lines defining the rectangular parameter domain. Triangular surfaces
have a triangular parameter domain. The primary choice is thus to subdivide
into three boundary curves, each corresponding to one of the straight lines
describing the triangular parameter domain.

2.5.4 Finding Nonsingular Intersection Points

Figure 2.9 illustrates a helix that, when intersected with certain axis parallel
straight lines, gives a number of intersection points. This happens although
the normal vectors of the helix, and the tangent direction of the straight
line are never orthogonal. Since the straight line can be described as the
intersection of two planar surfaces, the intersection can also be viewed as the
intersection of 3 surfaces in IR3. In this section we look at the intersection of
l smooth manifolds of dimension (l − 1) in IRl.

Theorem 23 Give A = {Ai}li=1 a set of closed and bounded smooth (l− 1)-
manifolds, with boundaries, in IRl, l > 1. Let n1, . . . ,nn be linearly inde-
pendent for any ni ∈ N (int(Ai)), i = 1, . . . , n. Let for i = 1, . . . , l , Di be
A with manifold Ai removed. Then

• All objects in the intersection between the manifolds in A, not lying on
the boundary of any of the manifolds in A, are nonsingular points.

• The intersection points lie on 1-manifolds touching the boundary of one
of the manifolds in Di, for i = 1, . . . , l.

Proof. For an internal intersection point to be singular, at least two man-
ifolds must have the same tangent plane. Since the normal sets are linearly
independent, this is impossible.
By removing one manifold theorem 14 is applicable, and the internal

intersections are 1-manifolds touching the boundary.
Now going back to figure 2.9, we see that the normal sets of the planar

surfaces intersecting in the straight line and the helix are linearly indepen-
dent. Thus, all the intersection points are nonsingular, and we can generate
curves on which the intersection points lie.
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Figure 2.9: The intersection of a helix and a straight line parallel to the helix
axis can produce a number of intersection points although the tangent of the
straight line and the possible normals of the helix are never orthogonal.
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2.5.5 Combining Parametric and Algebraic Represen-
tations

A common technique in intersection algorithms is to combine algebraic and
parametric descriptions as described in Chapter 4. For certain geometric
objects, e.g. the second degree algebraic curves and surfaces, we know both
descriptions.
Let h(s) be a parametric represented manifold of dimension g in IRl,

g < l, and let fi(ti), i = 1, . . . , n be manifolds in IRl that lie respectively in
the hypersurfaces fi(x) = 0, i = 1,. . . , n. Then instead of intersecting the
manifolds h(s) and fi(ti), i = 1, . . . , n, we can look at the problem

f1(h(s)) = . . . =fn(h(s)) =0. (2.6)

This problem can further be reformulated to the intersection of (n+1) man-
ifolds of dimension g in IRg+1. These manifolds are

g0(s) = (s, 0)
gi(s) = (s, fi(h(s)), i = 1, . . . , n.

(2.7)

Since fi(fi) ≡ 0, i = 1, . . . , n, the solution of (2.7) contains the solutions of
the original intersection problem in IRl. The dimension of the reformulated
problem (2.7) is smaller than that of the original intersection problem.
If we can find a sufficiently good approximation f̃i(x) = 0 to fi(x) = 0

close to fi for i = 1, . . . , n, then we have a method for finding approximative
solutions to the original intersection problem. In Chapter 4 we look at such
approximative implicitization.
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Chapter 3

Representation of Geometric
Objects

3.1 Parametric Representation of Closed and
Bounded Manifolds.

Parametric representation of manifolds in IR2 and IR3 by piecewise polyno-
mials is much used in CAGD-systems. It is well known that Bernstein and
B-spline basis functions have a better numerical behavior, when used for such
representation, than the power basis, see e.g. [Farouki:87]. In the approxi-
mative implicitization method presented in Section 4.3, stable and accurate
products of powers of the coordinate functions of the manifolds are central.
The approximative implicitization method is not limited to manifolds in IR2

and IR3, but addresses manifolds of dimension g in IRl with 1 ≤ g < l. The
properties needed in the basis functions, used for the parametric description
of the manifolds to be approximated, are assembled in definition 24. This
definition includes the following basis functions:

• Tensor product Bernstein basis.

• Bernstein basis defined over a simplex.

• Tensor product B-spline basis.

• Possibly certain subclasses of linear independent Box-spline and sim-
plex splines bases. However, we do not address these possibilities in this
thesis. For more information on multivariate splines see e.g. [Seidel:92].

When making products of the coordinate functions of a parametric rep-
resented manifold, we can without much loss of generality assume that the
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coordinate functions are represented with the same basis functions. For our
purpose it is convenient to let the description of any of these bases consist
of:

• A Description of the Polynomial Degree or Degrees of the basis
functions, in the following described by the multi index n or m.

• A Geometric Description of the Piecewise Polynomial Struc-
ture, i.e. of how the domain of the basis functions is split into piecewise
polynomial segments. We denote this description by the multi index t.

• A Description of the Continuity between adjacent piecewise poly-
nomial segments. This is denoted by the multi index c.

We refer to this as the PosProd basis description. The PosProd basis
functions are denoted

Bi,n(s) = Bc
i,n,t(s),

here i ∈ In = Ici,n,t is a set of multi indices for the basis functions. s is a
vector with a dimension corresponding to the dimension of the parameter
domain. We denote the number of multi indices Ñn. The following definition
only use the formBi,n(s), because t and c are constants for the multiplication
operations of interest.

Definition 24 (PosProd Basis Function) Let Scn,t be a space of piece-
wise polynomials of degree n and continuity c with a geometric description t
defined over the compact domain Ω. In addition let Scn,t contain the poly-
nomials of degree n. A basis {Bi,n}i∈In for Scn,t is called a PosProd basis
if

1. It is a partition of unity and the basis functions are nonnegativeX
i∈In

Bi,n(s) = 1, s ∈ Ω

with
Bi,n(s) ≥ 0, s ∈ Ω, i ∈ In.

2. The product h(s) ∈ Scm+n,t of the two functions p(s) ∈ Scn,t and q(s) ∈
Scm,t with nonnegative coefficients has nonnegative coefficients. If

p(s) =
P
i∈In

piBi,n(s), pi ≥ 0, i ∈ In
q(s) =

P
i∈Im

qiBi,m(s), qi ≥ 0, i ∈ Im.
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Then
h(s) = p(s)q(s) =

X
i∈Im+n

hiBi,m+n(s)

with
h(s) ∈ Scm+n,t,

and
hi ≥ 0, i ∈ Im+n.

The name PosProd reflects that the product of two PosProd represented
functions p and q with nonnegative cofficients results in a PosProd repre-
sented function h with with nonnegative cofficients.

Definition 25 (PosProd Algorithm) Given the product of two positive
functions, which both are represented by PosProd Basis functions. APosProd
Algorithm ensures that the relative rounding errors in the coefficients of the
product are limited by the relative rounding errors of the functions multiplied.
If p � (s) and q � (s) are respectively p(s) and q(s) from condition 2 in definition
24 with imposed relative rounding errors

p � (s) =
X
i∈In

pi(1 + �pi )Bi,n(s), pi ≥ 0, i ∈ In

q � (s) =
X
i∈Im

qi(1 + �qi )Bi,m(s), qi ≥ 0, i ∈ Im,

where
|�pi | ≤ �pmax ∧ (pi = 0 =⇒ �pi = 0), i ∈ In
|�qi | ≤ �qmax ∧ (qi = 0 =⇒ �qi = 0), i ∈ Im.

Then the product of p � (s) and q � (s) must satisfy

h � (s) = p � (s)q � (s) =
X

i∈Im+n

hi(1 + �hi )Bi,n+m(s)

with ¯̄
�hi
¯̄
≤ �pmax + �qmax + �pmax�

q
max, i ∈ Im+n.

Remark 11 It should be observed that the description of the PosProd basis
functions representing the product of two PosProd represented functions are
constructed by keeping the geometry description t and the continuity descrip-
tion c fixed, and just adding the polynomial degrees m and n.

Example 26 (Univariate B-spline) Let the PosProd description of the B-
spline basis be:
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• Description of polynomial degree n.

• Description of piecewise polynomial structure by strictly increasing knot
values

t = {ti}ηi=1 .

• Description of continuity at each knot value

c = {ci}ηi=1 = {−1, c2, . . . , cη−1,−1}

with 0 ≤ ci ≤ n− 1, i = 2, . . . , η − 1.

Here η is the number of distinct knot values. The number of basis func-
tions in a B-spline basis is (see Theorem IX.1 page 113 in [de Boor:78]) :

“Polynomial order”+“Number of internal knots” = n+ 1 +

η−1X
i=2

(n− ci).

Products of m functions represented in this B-spline basis have the same
distinct knot values and continuity. However, the polynomial degree is raised
to mn. Thus, the number of basis functions of degree mn is

Ñmn = mn+1+

η−1X
i=2

(mn− ci) = (η− 1)mn−
Ã

η−1X
i=2

ci

!
+1 ≤ (η− 1)mn+1.

In the case of a piecewise Bernstein basis representation the number of basis
functions of degree mn is

N̂mn = (η − 1)(mn+ 1).

The amount of basis functions save by using a B-spline representation
instead of a Bernstein representation is

N̂mn − Ñmn = (η − 1) +
Ã

η−1X
i=2

ci

!
− 1 = η +

Ã
η−1X
i=2

ci

!
− 2.

This number is independent of the number m of functions in the product .
Thus, if a piecewise Bernstein basis representation is used instead of a B-
spline representation the relative overhead with respect to the number of basis
functions decrease as m increase.
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Example 27 (Univariate B-spline) Let the knot vector defining a B-spline
basis be

t = {1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 5, 5} .
The PosProd basis description is

n = 3
t = {1, 2, 3, 4, 5}
c = {−1, 0, 1, 2,−1} .

The product of two such 3rd degree bases yields the PosProd basis description

n = 6
t = {1, 2, 3, 4, 5}
c = {−1, 0, 1, 2,−1} .

The product of the 3rd degree basis and 6th degree basis gives the PosProd
basis description

n = 9
t = {1, 2, 3, 4, 5}
c = {−1, 0, 1, 2,−1} .

Example 28 (Bi-variate B-spline basis.) The polynomial degree is n =
(k1 − 1, k2 − 1), where k1 and k2 are the polynomial orders in the two pa-
rameter directions of the tensor product B-spline basis. The description of
the piecewise polynomial structure t is two lists of knot values, one for each
parameter direction. The continuity c is two lists of numbers, one list for
each knot value list. The lists give as, in the univariate case, the continuity
at each knot value.

Next we deal with a theorem showing that product algorithms based on
convex combinations are PosProd Algorithms. Then two corollaries relating
the result to the Bernstein basis and to the B-spline basis follow.

Theorem 29 Let p(s) and q(s) be two functions represented with PosProd
basis functions of respectively degree m and n with the same piecewise poly-
nomial structure t and the same continuity description c. Further let the
product algorithm used for generating the coefficients hr ∈ Im+n of h(s) =
p(s)q(s) be based on sums of convex combinations of products of the coeffi-
cients of p(s) and q(s):

hr =
X
i∈In

X
j∈Im

γri,jpiqj, r ∈ Im+n,
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where X
i∈In

X
j∈Im

γri,j = 1, r ∈ Im+n

with
γri,j ≥ 0, r ∈ Im+n, i ∈ In, j ∈ Im.

Then the product algorithm is a PosProd Algorithm.

Proof. Let as in definition 25 p � (s) and q � (s) be respectively p(s) and
q(s) with imposed rounding errors. Then the coefficients h �

r , r ∈ Im+n of
h � (s) = p � (s)q � (s) satisfy

h �
r =

X
i∈In

X
j∈Im

γri,jpi (1 + �pi ) qj
¡
1 + �qj

¢
=

X
i∈In

X
j∈Im

γri,jpiqj +
X
i∈In

X
j∈Im

γri,jpiqj(�
p
i + �qj + �pi �

q
j )

= hr(1 + �hr),

where

�hr =

⎧⎪⎨⎪⎩
i∈In j∈Im

γri,jpiqj(�
p
i+�

q
j+�

p
i �
q
j )

i∈In j∈Im
γri,jpiqj

if ∃γri,jpiqj 6= 0

0 if ∀γri,jpiqj = 0.
If there exist γri,jpiqj 6= 0 we have, since γri,j, pi and qj all are nonnegative,
that �hr is a convex combination of (�

p
i + �qj + �pi �

q
j ), i ∈ In, j ∈ Im thus¯̄

�hr
¯̄
≤ max

i∈In,j∈Im

¯̄
�pi + �qj + �pi �

q
j

¯̄
≤ �pmax + �qmax + �pmax�

q
max,

which is the requirement in definition 25 of a product algorithm to be a
PosProd Algorithm. If all γri,jpiqj = 0 then

¯̄
�hr
¯̄
= 0, which also satisfies

definition 25.

Corollary 30 In [de Boor:87-1] and [Farin:86] multiplication formulas are
given for multiplication of functions represented in the tensor product Bern-
stein basis and for multiplication of functions represented in a Bernstein basis
over a simplex. These multiplication formulas are based on sums of convex
combinations of products of the coefficients of the functions being multiplied,
and are thus by theorem 29 PosProd Algorithms.

Error analysis of the B-spline basis is more difficult than the error analysis
of the Bernstein bases. In [Cox:72] the first backwards error analysis on the
B-spline recursion formulas was given. Here we show that there exist PosProd
Algorithms for tensor product B-splines.
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Corollary 31 In [Moerken:91-1] a product algorithm for univariate B-spline
represented functions is given. This product algorithm is based on sums of
convex combinations of products of the coefficients of the functions being
multiplied. The multiplication algorithm is thus by theorem 29 a PosProd
Algorithm.
For functions represented in a tensor product B-spline basis, the products

can be performed one variable at a time. Thus, performing multiplication one
variable at the time using the algorithm in [Moerken:91-1] for tensor product
B-splines, gives us a PosProd Algorithm.

Remark 12 The method for the multiplication of B-spline represented func-
tions is so resource demanding, that a good alternative is to use a knot inser-
tion algorithm to represent the function on a Bernstein knot vector. I.e. a
knot vector where all knots have multiplicity corresponding to the polynomial
order. Then the method for the multiplication of tensor product Bernstein
basis represented functions can be used on each polynomial segment in the
tensor product B-spline basis.

The concept of PosProd Basis Functions can possibly also be applicable
for certain subclasses of Box-splines and for simplex splines. However, for
the PosProd basis concept to be of practical use, there have to be PosProd
Algorithms for these types of multivariate splines. As far as the author of
the thesis knows, no such algorithms have been developed.
More details on PosProd bases are given in Appendix A. We also consider

rational functions and manifolds defined from PosProd basis functions.

Definition 32 (R-Positive Manifold) Let l and g be integers with g < l.
Given a compact set Ω ⊂ IRg and a PosProd basis Bi,n(s), i ∈ In defined
over Ω. A function p : Ω → IRl which for some real numbers c1i , . . . , c

l
i and

chi can be written in the form

p(s) =
X
i∈In

(c1i , . . . , c
l
i)

chi
αi,n(s), s ∈Ω (3.1)

with

αi,n(s) =
chiBi,n(s)X

j∈In

chjBj,n(s)
, i ∈ In,

and
chj > 0, j ∈ In,

is called a R-positive manifold in IRl of degree n. The numbers chj , j ∈ In
are called the weights of the R-positive manifold.
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Remark 13 The set of R-positive manifolds includes:

• Rational tensor product Bernstein represented manifolds with positive
weights.

• Manifolds represented by a Rational Bernstein basis with positive weights
defined over a simplex.

• Tensor product NURBS represented with positive weights.

The nonrational versions of these are included in the definition, because
setting chj = 1, j ∈ In, makes the denominator equal to 1 and the manifolds
nonrational.

3.2 The Algebraic Hypersurface

Suppose that q ∈ Pm(IR
l), i.e. that q is a polynomial of total degree m in l

variables. Then ©
x ∈ IRl | q(x) = 0

ª
(3.2)

is called an algebraic hypersurface.
Traditionally the polynomial q defining the algebraic hypersurfaces is rep-

resented in the power basis

q(x) =
X

i1+...+il+1=m

ij≥0, j=1,...,l+1

ai1,...,il

lY
j=1

x
ij
j .

However, describing the algebraic hypersurface using a simplex S in IRl

and representing the polynomial in a Bernstein basis in barycentric coordi-
nates defined over S, has desirable numerical properties in the algebraic im-
plicitization process to be described. The ealiest us of this approach known
to the author of this thesis can be found in [Sederberg:84-2]. The Bernstein
basis in barycentric coordinates over a simplex S is described in appendix
A.2. In this representation we have

q(x) =
X
i∈I(m)

bi
m!

i!
βi(x) (3.3)

with

i! = i1! . . . il+1!

βi(x) =
l+1Y
j=1

¡
βj(x)

¢ij ,
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and

I(m) = {(i1, . . . , il,il+1) ∈ INl+1
0 | 0 ≤ ij ≤ m−

j−1X
p=1

ip, j = 1, . . . , l + 1}.

Here β1(x), . . . , βl+1(x) are barycentric coordinates with respect to S, and
thus they satisfy

l+1X
i=1

βi(x) = 1

with
βi(x) ≥ 0, x ∈ S.
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Chapter 4

Approximative Implicitization

In Sections 2.4.1 and 2.5.5 the advantage of combining algebraic and paramet-
ric representations of the manifolds to be intersected was discussed. However,
for most parametric surfaces it is difficult to find the algebraic representation
as discussed in Chapter 12 in [Hoschek:93]. The conclusions in this reference
are:

• To find the exact algebraic representation of a 2D polynomial para-
metric curve can be done by building the Bezout resultant. The per-
formance and accuracy of such an implicitization is good enough to
be used in CAGD applications. The polynomial degree of the alge-
braic representation of a parametric polynomial curve is the same as
the polynomial degree of the parametric representation.

• For parametric surfaces the situation is more complex. A triangular
parametric surface of total degree n has an implicit formula of degree
n2. A parametric tensor product surface of degree (m,n) has an im-
plicit formula of degree 2mn. A bicubic surface patch thus results in
an algebraic representation of degree 18 with 1330 terms. Thus, the
computational complexity of finding algebraic representations for poly-
nomial surfaces is high. In [Hoschek:93] references to more details on
this topic are [Chionh:92] and [Sederberg:84-1].

In [Sederberg:95] the practical problems of exact implicitization of curves
and surfaces are addressed. The main problem is that huge expressions are
involved when performing exact implicitization of surfaces. Another problem
is that in the case of base points, points where both numerator and denom-
inator of a parametric curve or surface vanish simultaneously, the earlier
standard methods fail. The method described in [Sederberg:95] is a major
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step in the direction of more applicable exact implicitization methods. In-
stead of base points being a problem, these methods use the existence of base
points to reduce the degree of the algebraic curve or surface found. For a
survey of earlier methods [Hoffmann:93] can be consulted. Details on one of
these methods, Groebner Bases, can be found in the book [?]. Details on
resultant based methods can be found in the book [Cox:98]. In certain cases
direct implicitization methods exist, see e.g. [Floater:95-2] where rational
cubic implicitization is addressed.
The problem of finding the algebraic representation of a R-positive man-

ifold of dimension (l − 1) in IRl can be formulated as follows.

Definition 33 (Exact Implicitization) Let l > 1 and p(s), s ∈ IR(l−1) be
a R-positive (l−1)-manifold in IRl described as in definition 32. The process
of exact implicitization of p(s) is to find a nontrivial polynomial q ∈ Pm(IR

l)
of minimal degree m such that

q(p(s)) = 0, s ∈ IR(l−1).

We restrict the definition to R-positive manifolds to avoid introducing
additional concepts. All geometry representations that can be converted to
a R-positive manifold of dimension (l− 1) are thus covered. In remark 13 in
Section 3.1 we dealt with manifolds represented with a rational tensor prod-
uct Bernstein basis or a rational Bernstein basis over a simplex. We stated
that those have a R-positive description provided the weights are positive.
Power basis represented manifolds can be converted to these descriptions and
are thus covered provided the resulting weights are positive.
Exact implicitization is as stated in [Sederberg:95] and [Hoschek:93] a

difficult problem. In addition if an exact implicit representation is found, the
practical use of the implicit representation can be difficult, because:

• The polynomial degree is often high.

• Singular points near or on the implicit representation can give undesired
properties if finite precision arithmetic is used.

Since CAGD systems are based on floating point representation, all repre-
sented geometries are affected by a small relative rounding error. Thus, when
we find the “exact” algebraic representation, it is influenced by a rounding
error.

Example 34 Let a straight line segment be represented as a Bezier curve
of degree 3. If the representation is exact, then the algebraic degree of the
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straight line is 1. Represented in a float format on a computer small rounding
errors are assigned to the vertices representing the straight line. Thus, the
“straight line” probably has algebraic degree 3 when converted to infinite pre-
cision. Using methods that find the exact algebraic representation can thus
result in an algebraic representation with a higher polynomial degree than
necessary.

In this chapter we address approximative implicitization of R-positive
manifolds in IRl. We allow for the approximation of a manifold of dimension
g by hypersurfaces in IRl also for g < l−1. Thus, we are able to approximate
a manifold of dimension g by the intersection of l − g hypersurfaces.

Definition 35 (Approximative Implicitization) Let l and g be integers
with 1 ≤ g < l, and let p(s), s ∈ Ω ⊂ IRg be a R-positive manifold of
dimension g in IRl. The nontrivial algebraic hypersurface q(x) = 0, q ∈
Pm(IR

l), is an approximative implicitization of p(s) within the tolerance � ≥ 0
if we can find a continuous direction function g(s) and a continuous error
function η(s) such that

q(p(s) + η(s)g(s)) = 0, s ∈ Ω,

where
kg(s)k2 = 1, s ∈ Ω,

and
|η(s)| ≤ �, s ∈ Ω.

g(s) is called the direction for error measurement.

Sometimes it is convenient, to simplify the use of the algebraic approx-
imation q(x) = 0, to require that the gradient of q(x) is nonvanishing in a
sufficiently large region around p(s), s ∈ Ω. This additional condition is,
however, not part of the definition. If the gradient of q(x) vanish on p(s) or
too close to p(s), estimates for the error function η(s), cannot be based on
the gradient of q(x).
An alternative to the approximative implicitization method described in

this chapter, is as studied in [Sederberg:90], by minor modifications to insert
base points in the parametric description of p(s). Thus, the degree of the
algebraic description is reduced and the algorithms in [Sederberg:95] that
take benefit from the existence of base points, can be used.
We focus in this chapter on building the theoretical foundation for an

algorithm for approximative implicitization of p(s). The structure of the
chapter is as follows:
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• In Section 4.1 we show that the composition of an algebraic hyper-
surface q(x) = 0, with q(x) described as in (3.3) and a R-positive
g-manifold p(s), described as in definition 32, can be expressed

q(p(s)) = (Db)Tα(s),

where D is a matrix, b contains the coefficients of q and α(s) contains
the basis functions used for representing products of the coordinate
functions of p. This means that if b is in the null space of D, then
q(p(s)) = 0. Moreover

|q(p(s))| ≤ kDbk2 .

The matrix D has desirable numeric properties if the coefficients of
p(s) are contained in a simplex S, and this simplex is used for the
description of q in barycentric coordinates.

• In Section 4.2 we show that the relative rounding errors of the entries
in D are well behaved, when PosProd Algorithms are used for building
the matrix.

• In Section 4.3 we show that

min
kbk2=1

max
s∈Ω

| q(p(s)) | ≤ σ1.

Where σ1 ≥ 0 is the smallest singular value of D when barycentric
coordinates are used for describing the algebraic hypersurface, and p(s)
is contained in the simplex defining the barycentric coordinate system.
This result shows that singular value decomposition can be used for
finding an algebraic approximation of a R-positive manifold.

• In Section 4.4 we show how constraints can be added to the algebraic
approximation to control the behavior of the approximation. Then in
Subsection 4.4.5 we show that rows in the matrix D can be used as
constraints in a direct elimination process as an alternative to singular
value decomposition.

• In Section 4.5 we establish the convergence rate of the algebraic approx-
imation and show that this is high especially for the approximation of
parametric curves by algebraic curves (approximation of 1-manifolds in
IR2).

• In Section 4.6 we look at how to measure the error of an algebraic
approximation to a manifold.
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• In Section 4.7 we introduce the concept of admissable algebraic approx-
imation, as an attempt to establish a tool for evaluating the quality of
an algebraic approximation.

• In Section 4.8 we look at a method for choosing an approximation, with
a possibly well behaved gradient, from the approximative nullspace of
D.

• In Section 4.9 we give a more detailed version of the following algorithm:

Algorithm Approximative Implicitization

1. Choose the algebraic degree m of q.

2. Choose the barycentric coordinate system to be used in the ap-
proximation such that p(Ω) is inside the simplex defining the
barycentric coordinate system.

3. Build the matrixD of coefficients combining the characteristics of
q and p.

4. Find an approximative null space of D.

5. Choose as coefficients of q a vector from the approximative null
space with a “good” gradient behavior.

6. Check if the hypersurface is admissible. If not admissable increase
the number of vectors in the approximative null-space and go to
4.

7. Check if the hypersurface is within the prescribed tolerance �. If
not within the tolerance, try with a higher algebraic degree or
perform the approximation on a smaller part of p.

• In Section 4.10 we look at how a number of manifolds of possibly dif-
ferent dimensions can be approximated by one algebraic hypersurface.

• In Section 4.11 we describe how to find a hypersurface intended for
spatially separating two manifolds. Then we look at how to estimate
the distance between the manifolds by using such a hypersurface.

• The chapter is concluded in Section 4.12 by examples of approximative
implicitization of a degree 7 parametric Bezier curve.

In sections 4.1 through 4.5 the results presented are based on the man-
ifolds being R-positive. However, we only refer to these as manifolds or
g-manifolds inside these sections to simplify the presentation.
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4.1 Combining Parametric Manifolds and Al-
gebraic Hypersurfaces

In this section we look at the properties of the matrix D mentioned in the
introduction. It is assumed that the algebraic hypersurface is of total degree
m and represented in barycentric coordinates. The combination q(p(s)) is a
function of degree mn in the variable(s) s.
The combination q(p(s)) can be used:

1. To build the matrix/vector structure used in the approximative implic-
itization process.

2. For transforming an intersection problem to a zero value problem as
described in Section 2.5.5.

The results in this section and in the section following are useful to keep
the relative rounding errors in q(p(s)) at a minimal level.
The first step is theorem 36 reformulating q(p(s)) to an expression using

rational basis functions. Based on this, corollary 37 reformulates the sum to
an expression of vectors and matrices

q(p(s)) = (Db)T α(s).

The theorem then following limits |q(p(s))| by kDbk2, thus getting rid of
α(s). The remainder of the section is devoted to analyze the numerical
properties of the matrix D.
Important steps in this section are:

• The isolation of the coefficients of the algebraic hypersurface in one
vector b.

b =
³
b̃j
´M̃
j=1

.

The entries in the vector b are related to the coefficients, bj, j ∈I(m),
of the algebraic hypersurface q(x) = 0 by a lexicographical ordering ν

b̃ν(j) = bj, j ∈I(m).

We also use the inverse ν−1 of the lexicographical ordering giving

bν−1(j) = b̃j, j = 1, . . . , M̃ .
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• The isolation of the variables used for the parametrization of the man-
ifold in a vector α(s), also denoted the α-basis.

α(s) = (αi(s))
Ñmn

i=1 .

The entries in the vectorα(s) are related to the rational basis functions,
αi,mn(s), i ∈Imn, of a manifold by a lexicographical ordering γ

αγ(i)(s) = αi,mn(s), i ∈Imn.

We also use the inverse γ−1 of the lexicographical ordering γ giving

αi(s) = αγ−1(i),mn(s), i = 1, . . . , Ñmn.

• The isolation of expressions dependent of the coefficients of the mani-
fold in a matrix D. The entries in D are functions of the coefficients
of the coordinate functions of p(s).

D =
³
d̃i,j
´Ñmn,M̃

i,j=1,1
. (4.1)

We also use the lexicographical ordering ν and γ and their inverse for
the ordering of the entries of the D matrix.

In the proof a transformation from the Bernstein basis to the α-basis
plays a central role. Thus, the first step is to represent q(p(s)) in this basis.

Theorem 36 Let p(s) be a R-positive manifold defined as in definition 32,
and let q(x) = 0 be a hypersurface described in barycentric coordinates as in
(3.3). Then

q(p(s)) =
X
i∈Imn

⎛⎝ X
j∈I(m)

djibj

⎞⎠αi,mn(s), (4.2)

where dji satisfy

m!

j!
βj(p(s)) =

X
i∈Imn

djiαi,mn(s), j ∈ I(m).

Proof. We have from (3.3) that

q(p(s)) =
X
j∈I(m)

bj
m!

j!
βj(p(s)).
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Remembering that βj(p(s)) is a product of m of the coordinate functions of
p(s), we have that the polynomial degree of βj(p(s)) ismn. Thus, m!

j!
βj(p(s))

can be expressed in the α-basis of degree mn. We denote these coefficients
dji and get

m!

j!
βj(p(s)) =

X
i∈Imn

djiαi,mn(s), j ∈ I(m)

giving
q(p(s)) =

X
j∈I(m)

bj
X
i∈Imn

djiαi,mn(s).

Now rearranging the sum we get (4.2).
We are, at this stage, not addressing how this basis conversion is achieved

only that it is possible. We show in Section 4.2 that using PosProd Algo-
rithms for this transformation, limits the growth of relative rounding errors.

Corollary 37 Let l and g be integers with 1 ≤ g < l. Given q(x) = 0, an al-
gebraic hypersurface in IRl of degree m represented in barycentric coordinates
as defined in (3.3), and p(s) ∈ IRl, a g dimensional manifold as defined in
definition 32. Then

q(p(s)) = (Db)T α(s). (4.3)

Proof. From theorem 36 we have

q(p(s)) =
X
i∈Imn

⎛⎝ X
j∈I(m)

djibj

⎞⎠αi,mn(s)

=
ÑmnX
i=1

⎛⎝ M̃X
j=1

d
ν−1(j)
γ−1(i)bν−1(j)

⎞⎠αγ−1(i),mn(s) (4.4)

=
ÑmnX
i=1

(
M̃X
j=1

d̃i,j b̃j)αi(s)

= (Db)T α(s),

where

d̃i,j = d
ν−1(j)
γ−1(i)

b̃j = bν−1(j)

αi(s) = αγ−1(i),mn(s).
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In the following theorem we utilize the fact that PosProd basis functions
are the partition of unity, to remove the vectorα(s) containing the variable(s)
s used in the parametrization of the manifold.

Theorem 38 Let the algebraic hypersurface and the manifold be as in corol-
lary 37 and definition 32. Let s ∈ Ω, e.g. be in the support of the basis of the
manifold. Then

|q(p(s))| ≤ kDbk2 . (4.5)

Proof. For any s ∈ Ω we have by definition
ÑmnP
i=1

αi(s) = 1 and 0 ≤ αi(s) ≤ 1,

i = 1, . . . , Ñmn. Thus, kα(s)k2 ≤ 1, giving

|q(p(s))| =
¯̄̄
(Db)Tα(s)

¯̄̄
≤ kDbk2 kα(s)k2 ≤ kDbk2 .

In the following theorem we show that if the algebraic hypersurface is
defined by a barycentric Bernstein basis over a simplex, and that the simplex
contains the manifold, then the matrix D has desirable numeric properties:

• All entries are none negative.

• The sum of all entries in a row is one.

• The Frobenius norm of D is limited by the number of rows.

Theorem 39 Let D be defined as in (4.1). Then

M̃X
j=1

d̃i,j = 1, i = 1, . . . , Ñmn. (4.6)

If the coefficients of the manifold is contained in the simplex defining the
barycentric coordinate system in which q(x) is described, then

d̃i,j ≥ 0, i = 1, . . . , Ñmn, j = 1, . . . , M̃ , (4.7)

and

kDk2F =
ÑmnX
i=1

M̃X
j=1

³
d̃i,j
´2
=

M̃X
j=1

σ2j ≤ Ñmn. (4.8)

Here k kF is the Frobenius norm, and σi, i = 1, . . . , M̃ are the singular
values of D.
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Proof. Choose b = (1, . . . , 1)T , then q(x) = 1 giving

q(x) =
ÑmnX
i=1

⎛⎝ M̃X
j=1

d̃i,j

⎞⎠αi(s) = 1.

Since
ÑmnX
i=1

αi(s) = 1,

and αi(s) are linearly independent, we have

M̃X
j=1

d̃i,j = 1 .

Thus, (4.6) is proved.
Since the coefficients of the manifold are contained in the simplex defin-

ing the barycentric coordinate system, the coefficients of the barycentric rep-
resentation of the manifold are all nonnegative. In addition, because the
manifold is R-positive the weights of the manifold are by definition positive.
Thus, all the elements in D are greater than or equal to zero, as all func-
tions involved in the multiplication process making D have none negative
coefficients, and we use a PosProd basis. Thus, proving (4.7).
Because 0 ≤ d̃i,j ≤ 1, we have that 0 ≤ (d̃i,j)2 ≤ d̃i,j ≤ 1, resulting in

kDk2F =
ÑmnX
i=1

M̃X
j=1

³
d̃i,j
´2
≤

ÑmnX
i=1

M̃X
j=1

d̃i,j =
ÑmnX
i=1

1 = Ñmn

proving (4.8). The connection between the Frobenius norm and the sum of
the squares of the singular values can be found in standard books on linear
algebra e.g. in [Stewart:73].
In CAGD applications we are most often interested in 1-manifolds in IR2,

1-manifolds in IR3 or 2-manifolds in IR3. The results in theorem 39 are in-
dependent of the dimension of the space in which the manifold lies. In the
example following we assume that the conditions of theorem 39 are satis-
fied, and look at the size of Ñmn for 1-manifolds represented by nonuniform
rational B-splines (NURBS).

Example 40 Let the PosProd description of the B-spline basis used for
defining the 1-manifold be as in example 26 on page 47. Then

kDk2F ≤ (η − 1)mn+ 1,
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where η is the number of distinct knot values, m is the algebraic degree and n
the polynomial degree of the B-spline basis. In the case of a Bernstein basis
η = 2 and

kDk2F ≤ mn+ 1.

4.2 Stable Building of the D Matrix

When the matrix D, defined in (4.1), is constructed from a R-positive g-
manifold p(s), the entries result from products of powers of the coefficients
of the coordinate functions of p(s). The number of coordinate functions
involved in such a product is the total degreem of the algebraic hypersurface
q(x) = 0. In this section we limit the relative rounding error of these products

(p(s))j =
l+1Y
i=1

(pi(s))
ji ,

where j = (j1, . . . , jl+1) satisfying

l+1X
i=1

ji = m ≥ 1,

and
ji ≥ 0, i = 1, . . . , l + 1.

We require that PosProd Algorithms are used when building the D matrix.

Theorem 41 Let pi : Ω→ IR, i = 1, . . . , g be functions represented with the
same PosProd basis functions with nonnegative coefficients. Let p�,i(s) i =
1, . . . , g be respectively pi(s), i = 1, . . . , g with imposed relative rounding
errors, and let the relative rounding errors of the coefficients satisfy

| �pii |≤ �max, i ∈ In, i = 1, . . . , g.

Given ji ∈ IN0, i = 1, . . . , l + 1 that satisfy

m =
l+1X
i=1

ji. (4.9)

Then provided a PosProd Algorithm is used for evaluating the coefficients
hji, i ∈ Imn of

(p(s))j =
X
i∈Imn

hjiαi,mn(s)
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the relative rounding errors �
(pj)
i , i ∈ Imn of the coefficients hji, i ∈ Imn

satisfy ¯̄̄̄
�
(pj)
i

¯̄̄̄
≤

mX
i=1

µ
m

i

¶
�imax. (4.10)

Proof. For m = 1, only one of ji, i = 1, . . . , l + 1 are different from zero.
Assume that this is jt. By (4.9) jt = 1. Now �(p

j)

i reduce to¯̄̄̄
�
(pj)
i

¯̄̄̄
= |�pti | ≤ �max,

which is (4.10) for m = 1.
Assume (4.10) is true for m = k =

Pl+1
i=1 ji. Now multiplying by pt,

1 ≤ t ≤ l + 1, using the properties of a PosProd Algorithms on page 47 we
get ¯̄̄̄

�
pt(pj)
i

¯̄̄̄
≤ �ptmax + �

(pj)
max + �ptmax�

(pj)
max

≤ �max +
kX
i=1

µ
k

i

¶
�imax + �max

kX
i=1

µ
k

i

¶
�imax

≤
kX
i=1

µ
k

i

¶
�imax +

k+1X
i=1

µ
k

i− 1

¶
�imax

≤
kX
i=1

µµ
k

i

¶
+

µ
k

i− 1

¶¶
�imax + �k+1max

≤
k+1X
i=1

µ
k + 1

i

¶
�imax.

Which is (4.10) for m = k + 1.

Remark 14 Let the coefficients of a R-positive manifold p(s) ∈ IRl be con-
tained in a simplex S used for the definition of a hypersurface in barycentric
coordinates. Since the weights of a R-positive manifold are required to be pos-
itive the barycentric representation of p(s) has only non-negative coordinate
functions. Thus, theorem 41 can be used for limiting the growth of the round-
ing errors of D. The consequence of the theorem is that the relative rounding
error is growing with a rate related to the algebraic degree m, since we can
expect that m�max ¿ 1, and thus m�max is the dominant term in the sumPm

i=1

¡
m
i

¢
�i. This reasonably stable combination of algebraic and parametric

surfaces can be achieved by:
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Algebraic degree
m

Relative
rounding error Comment

2 2.0× 10−15 Conic sections

3 3.0× 10−15 Algebraic degree of
cubic parametric curve

18 1.8× 10−14 Algebraic degree of
bicubic parametric surface

100 1.0× 10−13
m m× 10−15

Table 4.1: Relative rounding errors for different algebraic degrees of the D
matrix when the R-positive manifold p(s) is defined in a barycentric coordi-
nate system containing the coefficients of p(s). The coefficients of p(s) are
assumed to have relative rounding errors limited by 10−15.

• Finding a simplex S containing the coefficients of a manifold.

• Represent the manifold in the barycentric coordinates defined by S.

• Represent the algebraic hypersurface by Bernstein basis functions de-
fined over S.

Example 42 Assume that we have represented the R-positive manifold in
barycentric coordinates such that the coefficients are inside a simplex S. Us-
ing double precision the value 10−15 is typically of the relative rounding errors.
Now building the matrix D for different algebraic degrees, we get table 4.1 as
a limit for the relative rounding errors of the elements in D.

4.3 Implicitization by Singular Values

How can the results from Section 4.1 be used when approximating a manifold
in IRl? In (4.5) we established a relationship

|q(p(s))| ≤ kDbk2 .

We now relate this expression to the singular values of D.

Theorem 43 Let as in (4.3) p(s) be a R-positive manifold in IRl. Let q(x) =
0, be an algebraic hypersurface in IRl with coefficient vector b. Then

min
kbk2=1

max
s∈Ω

| q(p(s)) | ≤ σ1. (4.11)
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Where σ1 ≥ 0 is the smallest singular value of D, where D is defined in
(4.1).

Proof. From (4.5) we have |q(p(s))| ≤ kDbk2 when s ∈ Ω. Thus, we can
reformulate to

max
s∈Ω

|q(p(s))|2 ≤ bTDTDb.

Now restricting the coefficient vector to have length 1, e.g. kbk2 = 1, and
taking the minimum we get

min
kbk2=1

max
s∈Ω

| q(p(s)) |2≤ min
kbk2 6=0

bTDTDb

bTb
= λmin. (4.12)

Where λmin ≥ 0 is the smallest eigenvalue of DTD. The last equal sign is
based on the fact that DTD is a Hermitian matrix (symmetric matrix) and
that for a Hermitian matrix A the Raleigh quotient x

TAx
xTx

satisfies

λmin ≤
xTAx

xTx
≤ λmax,

where λmin is the smallest and λmax the largest eigenvalue of A. The smallest
singular value of D is σ1 =

√
λmin, giving (4.11).

Remark 15 It is important to observe the number of singular values in D
that are identical zero. If the number exceeds 1, then it is possible that we
have used a higher algebraic degree than necessary in the approximation. This
also is an indication that the parametric description of the manifold contains
base points.

In the general case when p(s) ∈ IRl is a R-positive manifold, it is impos-
sible to get an exact algebraic representation as a single algebraic equation.
This because the R-positive manifold, if it consists of more than one poly-
nomial segment, in most cases has some discontinuity of some derivative at
some point. In this case we see from (4.11) that the eigenvector correspond-
ing to the smallest eigenvalue, is a solution of a least squares approximation
of an algebraic hypersurface to p(s) . Although we find a least squares ap-
proximation, there is no guarantee that we find the best solution. E.g. the
choice of barycentric coordinate system influences D. In addition the be-
havior of the gradient of the algebraic hypersurface determines how accurate
the approximation is. How to find an approximation with a well behaved
gradient is addressed in Section 4.8.
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4.4 Constraining the Algebraic Equation

To better integrate approximations of R-positive g-manifolds into geometric
modeling systems, we introduce in this section different ways to constrain
the algebraic approximation to adhere to different sorts of constraints. We
use manifolds of dimension l to define the constraints. The dimension of
the manifolds being applied as interpolation constraints, is in most cases less
than the dimension of the manifold being approximated. The constraints
are:

• Interpolation of a manifold is addressed in subsection 4.4.1. Often it
is desirable that the approximation interpolates given points. For 1-
manifolds (curves) the points are often the start and end points, for 2-
manifolds (surface) the points are often break points on the boundary of
the 2-manifold. For 2-manifolds the constraining manifolds can also be
1-manifolds (curves). Typical curves applied are the boundary curves
of the 2-manifold. However, curves internal to the manifold or outside
the 2-manifold can also be used. Internal curves can be used to ensure
exact fit to the boundary of another 2-manifold, while external curves
can be used to control the shape of the algebraic approximation outside
the manifold being approximated.

• Forcing the gradient of the polynomial q(x) used for describing the
hypersurface to be orthonogal to a tangent direction varying along a
manifold is addressed in subsection 4.4.2. In combination with an in-
terpolation constraint this can be used to induce interpolation of a
manifold and tangent direction varying along the manifold at the same
time. If the tangent constraint is not accompanied by a position con-
straint, then we model the behavior of the gradient of q(x) in a region
defined by a manifold. If the manifold being approximated is a 1-
manifold the typical constraints are tangent at start and end points. If
the manifold being approximated is a 2-manifold, then the constraints
are typically the two tangent directions at break points in the boundary
of the 2-manifold or the tangent behavior along the boundary of the
2-manifold.

• Forcing the gradient of q(x) to take on a specific behavior along a
manifold is addressed in subsection 4.4.3. This can be used to induce
singular regions in the approximation, either inside or outside the man-
ifold approximated.

In subsection 4.4.4 we consider how the constraints can be organized in a
linear equation system, which can be applied for modifying the matrix vec-
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tor expression kDbk2 describing the unconstrained approximation problem.
Choosing a selection of rows from theD matrix as constraints is addressed in
subsection 4.4.5. These can either be the most dominant rows, or rows that
induce interpolation of position, tangent or higher order derivatives along
the boundary of the manifold. This approach can also be used for a direct
search for an approximative null space of D.

4.4.1 Interpolation of Position along a Manifold

To impose interpolation of the position over a constraining manifold r(t), we
can use the expressions from equation (4.3) giving

q(r(t)) = (Dkb)
T αr(t) = 0.

Remembering that the basis functions in αr(t) are linearly independent we
can reformulate the expression, giving

Dkb = 0. (4.13)

4.4.2 Interpolation of Tangent along a Manifold

The normal of the algebraic hypersurfaces is, provided the gradient is nonva-
nishing, parallel with the gradient of the hypersurface. Thus, to ensure that
the normal is orthogonal to a given direction dr(t) along the manifold r(t)
we establish

∇q(r(t)) · dr(t) = 0.
Provided both r(t) and dr(t) can be expressed with the same PosProd basis
functions, we rearrange this expression on the form

∇q(r(t)) · dr(t) =
³
D

0
kb
´T

α̃r(t) = 0.

Further remembering that the basis functions in α̃r(t) are linearly indepen-
dent, we get the constraints

D
0
kb = 0. (4.14)

4.4.3 Interpolation of Normal along a Manifold

Another possibility is to impose that the gradient takes on certain behavior
nr(t) along a given manifold r(t)

∇q(r(t)) = nr(t) =

⎛⎜⎝ n1(t)
...

nl(t)

⎞⎟⎠ ,
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or specifying each coordinate function separately

∂q(r(t))

∂xi
= ni(t), i = 1, . . . , l.

Provided r(t) and nr(t) can be express by the same PosProd basis functions,
we get

∂q(r(t))

∂xi
= (Dn,ib)

T α̃r(t) = ni · α̃r(t), i = 1, . . . , l.

Further remembering that the basis functions in α̃r(t) are linearly indepen-
dent, we get the constraints

(Dn,ib)
T = ni, i = 1, . . . , l. (4.15)

4.4.4 The Constraint Equation

Combining (4.13), (4.14), (4.15) and possibly rows from the matrixD we can
influence the result of the algebraic approximation process. The constraints
can be organized as r linearly independent constraints on the algebraic hy-
persurface in a set of linear constraint equations:

Kb = h. (4.16)

In the following theorem we assume that the matrix K and b can be split in
two parts

K = (K1,K2) (4.17)

b =

µ
b1
b2

¶
. (4.18)

where

• K1 is a nonsingular r × r matrix.

• K2 is a r × (M̃ − r) matrix.

• b1 is a vector of length r.

• b2 is a vector of length (M̃ − r).

We thus assume that the constraints are linearly independent and that
the number of constraints r is less than the number of coefficients in the
algebraic hypersurface.
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Theorem 44 Let the combination of a hypersurface and a manifold satisfy
the constraint equation defined in (4.16) which is organized as in (4.17) and
(4.18) then

|q(p(s))| ≤ kDK0b2 + h
0k2 ,

where

K0 =

µ
−K−11 K2

I

¶
,

and

h0 = D

µ
K−11 h
0

¶
.

Proof. Using (4.17) and (4.18), we get

(K1,K2)

µ
b1
b2

¶
= h,

giving
b1 = K

−1
1 h−K−11 K2b2.

Resulting in

b=

µ
−K−11 K2

I

¶
b2 +

µ
K−11 h
0

¶
.

Substituting this into (4.5) in lemma 38, we get

|q(p(s))| ≤ kDbk2 (4.19)

≤
°°°°Dµ −K−11 K2

I

¶
b2+D

µ
K−11 h
0

¶°°°°
2

= kDK0b2 + h
0k2 .

Remark 16 By pivoting and removing redundant constraints, we can bring
any constraint equation to the structure described in (4.17).

Remark 17 When we want to find an algebraic hypersurface approximating
a manifold, a first choice of an algorithm is singular value decomposition of
DK0. This can be used in the case of both when h0 = 0 and h0 6= 0.
• For h0 = 0 the problem reduce to |q(p(s))| ≤ kDK0b2k2. Thus, the
coefficient vectors corresponding to the smallest singular values of DK0

are solutions to the approximation problem.

• For h0 6= 0, using e.g. theorem 6.8 in [Stewart:73] the singular value
decomposition of DK0b2 can be used for finding the vector b2, giving
the minimum of kDK0b2 + h

0k2.
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4.4.5 Direct Search for an Approximative Null Space

We use rows in the D matrix as constraints, described as in Section 4.4.4,
and here assume that the matrix D can be given the structure

D =

µ
D1,1 D1,2

D2,1 D2,2

¶
, (4.20)

where

• D1,1 is a r × r nonsingular matrix.

• D2,1 is a (N − r)× r.

• D1,2 is a r × (M̃ − r) matrix.

• D2,2 is a (N − r)× (M̃ − r) matrix.

Further let b be split as in (4.18)

b =

µ
b1
b2

¶
,

where

• b1 is a vector of length r.

• b2 is a vector of length (M̃ − r).

Lemma 45 Let D be built up by the submatrices as described in (4.20) and
let the constraints be described by

D1,1b1 +D1,2b2 = 0. (4.21)

Then

Db =

µ
0

−D2,1D
−1
1,1D1,2 +D2,2

¶
b2. (4.22)

Proof. Using the constraints we get b1 = −D−11,1D1,2b2, giving

Db =

µ
D1,1 D1,2

D2,1 D2,2

¶µ
b1
b2

¶

=

µ
D1,1 D1,2

D2,1 D2,2

¶µ
−D−11,1D1,2

I

¶
b2

=

µ
0

−D2,1D
−1
1,1D1,2 +D2,2

¶
b2.
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In an elimination process it is convenient to maintain the size of the
matrices during the process. Thus, we combine the constraint equation into
the result of lemma 45 to maintain the size of D in the lemma following.

Theorem 46 Let D be split as in (4.20) and use (4.21) as constraints. Then

Db =

µ
I D−11,1D1,2

0 −D2,1D
−1
1,1D1,2 +D2,2

¶µ
b1
b2

¶
(4.23)

withµ
I D−11,1D1,2

0 −D2,1D
−1
1,1D1,2 +D2,2

¶
=

µ
D−11,1 0
−D2,1D

−1
1,1 I

¶µ
D1,1 D1,2

D2,1 D2,2

¶
.

(4.24)

Proof. Rewriting the constraint equation

D1,1b1 +D1,2b2 = 0

we get µ
I D−11,1D1,2

0 0

¶
b = 0.

From (4.22) we have that

Db =

µ
0

−D2,1D
−1
1,1D1,2 +D2,2

¶
b2 =

µ
0 0
0 −D2,1D

−1
1,1D1,2 +D2,2

¶
b.

Adding the latter equations, we obtain

Db =

µ
I D−11,1D1,2

0 −D2,1D
−1
1,1D1,2 +D2,2

¶
b.

The matrix used for premultiplication in (4.24) can be shown to be correct
by multiplying the two matrices.
If the entries in the block D2,1D

−1
1,1D1,2+D2,2 in (4.22) have a sufficiently

small value, then the results in lemma 45 can be used as an elimination
process to find an approximative null space ofD. In the theorem following we
introduce conditions that have to be satisfied to control such an elimination
process.

Theorem 47 Let D be built by submatrices as described in (4.20), let

D1,1b1 +D1,2b2 = 0,
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and °°−D2,1D
−1
1,1D1,2 +D2,2

°°
∞ ≤ �.

Then

min
kbk2=1

max
s∈Ω

|q(p(s))| ≤ �

q
(N − r)(M̃ − r).

Proof. Using lemma 45 we get

kDbk2 ≤
°°−D2,1D

−1
1,1D1,2 +D2,2

°°
∞ kbk2 ≤ �

q
(N − r)(M̃ − r) kbk2 .

Now using (4.12) we get

min
kbk2=1

max
s∈Ω

| q(p(s)) |2≤ min
kbk2 6=0

bTDTDb

bTb
≤ �2(N − r)(M̃ − r)

proving the theorem.
The following elimination method is inspired by Gaussian elimination

with pivotation. It starts with the line containing the element with the
largest absolute values as constraint equation and perform the elimination.
The elimination is repeated until all lines except one has been used for elim-
ination, or the absolute value of the largest remaining element is less than a
specified tolerance. The elimination sequence is remembered as well as the
value of the largest element at each step in the process. Since the elimina-
tion sequence is determined during the elimination process, pointer arrays
are used to introduce pivotation. The algorithms is based on theorem 46
with added pivotation, and repeated use with the submatrix D1,1 having
dimension 1× 1. The stop condition is based on theorem 47.

Algorithm

1. D̃ = D.

2. Mark all rows and columns in D as untreated.

3. While the maximal untreated element in D is greater than � in
absolute value and more than one column untreated:

(a) Let di,j be the untrated element with maximal absolute value.
(b) Divide row di by di,j.
(c) Eliminate the entries with index j from all other rows of D,

i.e. dl := dl − dl,jdi, l 6= i.

74



(d) Mark row i and column j as treated and remember that coef-
ficient j was eliminated in row i, remember the absolute value
of the largest element before the elimination step, as well as
the number of the elimination step.

4. Now all untreated elements have absolute value less than or equal
to �, or only one column remains.

Remark 18 At the end of this process the matrix has the structure that is a
row and column pivotation ofµ

I D−11,1D1,2

0 −D2,1D
−1
1,1D1,2 +D2,2

¶
.

If
°°−D2,1D

−1
1,1D1,2 +D2,2

°°
∞ ≤ � then independent of choice of b2 the

value of
min
kbk2=1

max
s∈Ω

| q(p(s)) |2≤ �2(N − r)(M̃ − r),

because kb2k2 ≤ kbk2. Thus, we have found an approximative null space.
Since ¡

I D−11,1D1,2

¢µ b1
b2

¶
= 0,

we can find b1 by
b1 = −D−11,1D1,2b2

and thus b by

b =

µ
b1
b2

¶
=

µ
−D−11,1D1,2

I

¶
b2.

The algorithm just described remembers −D−11,1D1,2, thus the approxima-
tive null space can be calculated from the reduced approximative null space.

This elimination algorithm performs more slowly than simple implemen-
tations of Singular Value Decomposition (SVD). However, it is faster than
SVD implementations requiring DTD to be calculated. The remark, in the
original version of these thesis, that the direct search for the approximative
null space was slower than the use of SVD was based on the use of a fast SVD-
algorithm that do not always converge. For more information on Singular
Value Decomposition the book [Golub & Loan:83] can be consulted.
The tried SVD algorithms sometimes fail when the algebraic degree m

is higher than 10 and the calculation is performed in double precision. In
these cases the smallest singular values of D are separated less than the
rounding errors in the D matrix. Thus, a minor change in D can induce a
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major change in the singular subspace of D as stated in theorem 8.3-6. in
[Golub & Loan:83]. The SVD implementations report lack of convergence.
The reason for the failure is probably that there is an iteration process in
the SVD implementation to speed up the calculation, and this fails when the
separation of the singular values is small compared to the rounding errors.

4.5 Convergence Rate of Approximative Im-
plicitization

For approximative implicitization to be useful we need to establish results
on how the approximation error behaves, as the part of the manifold being
approximated is reduced. The convergence rates established are best for low
dimensional manifolds.

• Approximation of 1-manifolds in IR2 with convergence rate

O(h
(m+1)(m+2)

2
−1).

• Approximation of 1-manifolds in IR3 with convergence rate

O(h
(m+1)(m+2)(m+3)

2
−1).

• Approximation of 2-manifolds in IR3 with convergence rate

O(h
1
6

√
(9+12m3+72m2+132m)− 1

2 ).

In this section we at first present a theorem on the convergence rate of the
approximation of a hypersurface of degree m to a manifold of dimension g in
IRl. Then we analyze the above-referenced convergence rates. However, the
convergence rate can be misleading if the gradient of the hypersurface found,
is vanishing or near vanishing, close to the manifold being approximated.
The proof of the theorem is based on power expansion around a point

v ∈ Ω, where Ω is the parameter domain of the manifold p approximated.
The value of h is used to define a closed hyperbox in Ω around v in the
following way:

Ω(v, h) = Ω ∩ {s ∈IRg | kv− sk∞ ≤ h} .

It should be noted that the matrix D from (4.3) now is dependent on the
value of v and h.
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Theorem 48 Given q(x) = 0, an algebraic hypersurface in IRl of degree m
with coefficient vector b, and p(s), a Cn+1-continuous manifold of dimension
g in IRl. Then for v ∈ Ω and h > 0

min
kbk2=1

max
s∈Ω(v,h)

|q(p(s)| ≤ min
kbk2=1

kDbk2 ≤ O(hn+1),

where n satisfies µ
n+ g + 1

g

¶
≥
µ
m+ l

l

¶
>

µ
n+ g

g

¶
.

Proof. Use the description of the algebraic hypersurface in (3.3)

q(x) =
X
i∈I(m)

bi
m!

i!
βi(x),

and let

ri(s) =
m!

i!
βi(p(s)).

Then (4.4) can be written

q(p(s)) =
X
i∈I(m)

bi ri(s).

Now assume that s ∈ Ω(v, h), then with s = v + δ, we have that kδk∞ ≤ h.
Taylor expansion of ri(s) around v with a polynomial of total degree n gives

ri(v+ δ) = ti(δ) + ei(δ),

where ti(δ) has total degree n, and ei(δ) = O
¡
(kδk∞)

n+1¢ ≤ O(hn+1). The
number of terms in a polynomial of total degree n in g variables isµ

n+ g

g

¶
.

The number of coefficients in the algebraic hypersurface isµ
m+ l

l

¶
.

Provided the number of coefficients in the algebraic hypersurface is greater
than number of coefficients in the polynomial of total degree n, then the
polynomials ti(δ) are linearly dependent. I.e. ifµ

m+ l

l

¶
>

µ
n+ g

g

¶
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we can find coefficients b0 with kb0k2 = 1, such thatX
i∈I(m)

b0i ti(δ) = 0. (4.25)

We are interested in the largest natural number n with this property, thus
we state µ

n+ 1 + g

g

¶
≥
µ
m+ l

l

¶
>

µ
n+ g

g

¶
.

Using the above Taylor expansion, the associated error functions, and that
δ = s− v, we get

q(p(s)) = (Tb)Tα(s) + (Eb)Tα(s)

where
(Tb)Tα(s) =

X
i∈I(m)

bi ti(s− v)

and
(Eb)Tα(s) =

X
i∈I(m)

bi ei(s− v).

Now remember that ei(s− v) = ei(δ) = O(hn+1), we have that

(Eb)Tα(s) = O(hn+1).

All entries in α(s) are linearly independent, thus all entries in Eb0 must be
O(hn+1), giving kEb0k2 = O(hn+1).
Now remembering (4.25) and that Tb0 = 0, we get

min
kbk2=1

max
s∈Ω(v,h)

|q(p(s))| ≤ min
kbk2=1

kDbk2 ≤
kDb0k2
kb0k2

=
k(T+E)b0k2

kb0k2
=
kEb0k2
kb0k2

= O(hn+1).

We now look at curves in IR2 to illustrate the properties of approximative
implicitization.

Corollary 49 Let q(x) = 0 be an algebraic curve of degree m with coefficient
vector b, and let p(s) be a sufficiently smooth 1-manifold in IR2. Then

min
kbk2=1

max
s∈Ω(v,h)

|q(p(s)| ≤ min
kbk2=1

kDbk2 ≤ O(h
(m+1)(m+2)

2
−1).
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Algebraic degree m 1 2 3 4 5 6 7 8 9 10
Convergence rate 2 5 9 14 20 27 35 44 54 65

Table 4.2: Convergence rate of the approximative implicitization of a suffi-
ciently smooth parametric curve in IR2 with an algebraic curve of degree m,
1 ≤ m ≤ 10.

Proof. Let l = 2 and g = 1 in theorem 48 givingµ
n+ 2

1

¶
≥
µ
m+ 2

2

¶
>

µ
n+ 1

1

¶
.

Rewriting we get

n+ 2 ≥ (m+ 1)(m+ 2)

2
> n+ 1,

or

n =
(m+ 1)(m+ 2)

2
− 2.

We add 1 to get the convergence rate.

Example 50 In table 4.2 we show the convergence rate from corollary 49.
The convergence rate is given for algebraic degrees in the range, 1 ≤ m ≤ 10.
Note that the convergence rate is high even for low algebraic degrees.

The corollary following shows that the convergence rate increases as the
dimension l of the space in which the 1-manifold lies grow.

Corollary 51 Let q(x) = 0 be an algebraic surface of degree m with co-
efficient vector b, and let p(s) be a sufficiently smooth 1-manifold in IR3.
Then

min
kbk2=1

max
s∈Ω(v,h)

|q(p(s)| ≤ min
kbk2=1

kDbk2 ≤ O(h
(m+1)(m+2)(m+3)

6
−1).

Proof. Let l = 3 and g = 1 in theorem 48 givingµ
n+ 2

1

¶
≥
µ
m+ 3

3

¶
>

µ
n+ 1

1

¶
.

Rewriting we get

n+ 2 ≥ (m+ 1)(m+ 2)(m+ 3)

6
> n+ 1,

or

n =
(m+ 1)(m+ 2)(m+ 3)

2
− 2.

We add 1 to get the convergence rate.
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Algebraic degree m 1 2 3 4 5 6 7 8 9 10
Convergence rate 3 9 19 34 55 83 119 164 219 285

Table 4.3: Convergence rate of the approximative implicitization of a suffi-
ciently smooth parametric curve in IR3 with an algebraic surface of degree
m, 1 ≤ m ≤ 10.

Example 52 In table 4.3 we show the convergence rate from corollary 51.
The convergence rate is given for algebraic degrees m in the range, 1 ≤ m ≤
10. Note that the extremely high convergence rate is due to the high number
of coefficients in an algebraic surface.

The corollary following show that the convergence rate is lower for 2-
manifolds in IR3, than for 1-manifolds in IR2.

Corollary 53 Let q(x) = 0 be an algebraic surface of degree m with coef-
ficient vector b, and let p(s, t) be a sufficiently smooth 2-manifold in IR3.
Then

min
kbk2=1

max
(s,t)∈Ω(v,h)

|q(p(s, t))| ≤ min
kbk2=1

kDbk2 ≤ O(h
1
6

√
(9+12m3+72m2+132m)− 1

2 ).

Proof. Let l = 3 and g = 2 in theorem 48 givingµ
n+ 3

2

¶
≥
µ
m+ 3

3

¶
>

µ
n+ 2

2

¶
.

Now finding n such that µ
m+ 3

3

¶
− 1 =

µ
n+ 2

2

¶
,

and using the largest natural number less than the calculated n we get

n(m) =

¹
1

6

p
(9 + 12m3 + 72m2 + 132m)− 3

2

º
.

We add 1 to get the convergence rate.

Example 54 In table 4.4 we show the convergence rate from corollary 53.
The convergence rate is given for algebraic degrees m in the range, 1 ≤ m ≤
10. Note that the convergence rate is relatively high even for low algebraic
degrees.
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Algebraic degree m 1 2 3 4 5 6 7 8 9 10
Convergence rate 2 3 5 7 10 12 14 17 20 23

Table 4.4: Convergence rate of the approximative implicitization of a suffi-
ciently smooth parametric surface in IR3 with an algebraic surface of degree
m, 1 ≤ m ≤ 10.

4.6 Accuracy of Approximative Implicitiza-
tion

In many cases we want an approximation to be within a certain tolerance
� > 0 of the object approximated. When we measure the distance from a
manifold p(s) to a manifold q(t) a natural choice for distance measure is

d(p,q) = max
s
inf
t
kp(s)− q(t)k2 .

In this definition inf is used since the manifolds are not required to be closed.
The distance measure can be interpreted:

• For all points on p find the closest point on q.

• Use the maximum distance found as distance measure.

Note that this expression is similar to (2.2), that we used in the discussion
concluding with the definition of Local Maximal Points of one set with respect
to another set.
To use the distance function d(p,q) we require a parametric description of

both manifolds. In the case we shall discuss, this is not the case. We have an
algebraic hypersurface q(x) = 0 and a parametric represented manifold p(s).
To measure the error we now introduce a direction for error measurement
g(s) satisfying kg(s)k2 = 1. To be a useful direction for error measurement
we assume that there exists an error function ρ(s) ∈ C0 such that

q(p(s)− ρ(s)g(s)) = 0.

Not all choices for direction for error measurement will satisfy this require-
ment. To simplify the notion we now let p = p(s), g = g(s) and ρ = ρ(s).
The above equation can then be expressed

q(p− ρg) = 0.

Taylor expansion with respect to ρ now gives

q(p)−∇q(p− θg) · ρg = 0
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with θρ ≥ 0 and |θ| ≤ |ρ|. Rearranging we get
ρ (∇q(p− θg) · g) = q(p).

Now setting
ρmax = max

s∈Ω
|ρ(s)| ,

and assuming that

∇q(p− θg) · g 6= 0, s ∈ Ω, |θ| ≤ ρmax

we get, by reintroducing p(s), g(s) and ρ(s)

ρ(s) =
q(p(s))

∇q(p(s)− θg(s)) · g(s) (4.26)

with |θ| ≤ |ρ(s)|.
We see that the relative orientation of the direction for error measure-

ment, and the gradient of q plays a central role in estimating the error.
Thus, an optimal solution is to find a direction for error measurement that
gives the maximum value of the denominator in the expression above. This
requirement can be formulated as finding g(s) with kg(s)k2 = 1 that satisfies

min
s ∈ Ω,

|θ| ≤ ρmax

|∇q(p(s)− θg(s)) · g(s)| = max
kĝ(s)k2=1

min
s ∈ Ω,

|θ| ≤ ρmax

|∇q(p(s)− θĝ(s)) · ĝ(s)| .

However, to find such a maximum is not simple. Thus, for practical
purposes we want to make a simpler choice of direction for error measurement.
From (4.26) we see that if the gradient gets small the error is growing, we also
see that if the gradient and direction for error measurement are near normal
the error will be growing. Thus, to make the direction for error measurement
dependent on the gradient direction seems natural. At the same time for
curves in IR2 or surfaces in IR3 it is natural to base the direction for error
measurement on the normal. This is detailed in the following subsection.

4.6.1 Simple Direction for Error Measurement

We want to choose a direction for error measurement that is in accordance
with [Degen:92], where for curves in IR2 the direction chosen is the curve
normal. Further we want that for (l − 1)-manifolds in IRl the direction
coincides, if possible, with the normals of the smooth parameterized bounded
manifolds. Besides we want to relate the direction for error measurement to
the gradient of the polynomial q defining the hypersurface q(x) = 0.
The approach is based on Gram-Schmidt orthonormalization, and has 3

steps:
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1. For the point p(s) on the bounded g-manifold, for which we want to
measure the distance to the approximating hypersurface, we find an
orthonormal basis ti(s), i = 1, . . . , g spanning the tangent bundle.

ti(s) =

∂p(s)
∂si
−

i−1P
j=1

³
∂p(s)
∂si

· tj(s)
´
tj(s)°°°°°∂p(s)∂si

−
i−1P
j=1

³
∂p(s)
∂si

· tj(s)
´
tj(s)

°°°°°
2

, i = 1, . . . , g.

This orthonormal basis exists since we assume that p(s) is properly
parameterized.

2. We remove from the gradient the components spanned by the tangent
bundle

n̂(s) = ∇q(p(s))−
gX

i=1

(∇q(p(s)) · ti(s)) ti(s).

3. Then we normalize n̂(s) if n̂(s) 6= 0

ñ(s) =

⎧⎪⎨⎪⎩
n̂(s)

kn̂(s)k2
if kn̂(s)k2 6= 0

0 if kn̂(s)k2 = 0
. (4.27)

Definition 55 (Simple Direction for Error Measurement) The direc-
tion ñ(s) defined in (4.27), is denoted Simple Direction for Error Mea-
surement. This direction is used for measuring the distance from a point
p(s), on a regularly parameterized smooth bounded g-manifold, to a hyper-
surface q(x) = 0.

When ñ(s) = 0, the gradient of the algebraic hypersurface at p(s) is either
0, or coincide with the tangent bundle of the manifold at p(s). In both cases
the algebraic surface is not an optimal approximation to the manifold.
We now look at the consequence of this definition for curves (1-manifolds)

in IR2 and IR3, and for surfaces (2-manifolds) in IR3.

Example 56 For 1-manifolds in IR2, ñ(s) is the unit normal vector at
p(s), provided the gradient of the polynomial describing the algebraic curve
is nonvanishing at p(s) and does not coincide with the tangent at p(s). This
is in accordance with [Degen:92] when ñ(s) 6= 0.
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Example 57 For 2-manifolds in IR3, ñ(s) is the unit normal vector at p(s),
provided the gradient of the algebraic surface is nonvanishing at p(s) and does
not coincide with the tangent bundle at p(s).

Example 58 For 1-manifolds in IR3, ñ(s) is the normalized version of the
gradient of the algebraic surface at p(s) with the component of the gradient
in the direction of the tangent of p(s) removed. ñ(s) = 0 if the gradient and
the tangent coincide at p(s).

Prof. T. W. Sederberg pointed out to me that in the case there exists a
direction where the first derivative of q is monotonic, then the error bound
in [Sederberg:89-3] can be used. This is a easier than approach described
above.

4.7 Admissable Algebraic Approximations

The contents of this section is not essential for the use of the approximative
implicitization and is only included to try to make a tool for evaluating if an
algebraic approximation is “good”.
In [Degen:92] a set of admissible parametric curves A(C) for the approxi-

mation of a parametric curve C ∈ C2 and the concept of the normal distance
from the original curve to the approximation were introduced. We here intro-
duce similar concepts for judging if an algebraic hypersurface approximating
a manifold is within a specified approximation tolerance and “admissible”.
For certain purposes e.g. to separate geometries, it is sufficient that the
hypersurface is within a certain distance of the manifold. For judging the
approximation of a manifold with a hypersurface or with an intersection of
a number of hypersurfaces we have to define a concept of admissible hyper-
surfaces. The concept of admissible curves was in [Degen:92] introduced to
avoid that the approximation turns with respect to the curve approximated,
and to ensure that the tangents at corresponding points on the two curves
have a positive scalar product.
Another useful concept from [Degen:92] is the normal field N (C) of a

curve C ∈ C2. With each point p(t) ∈ C it was associated the part of
the normal {p(t) + ρn(t) | ρ ∈ IR} for which ρκ(t) < 1 , (ρ unrestricted if
κ(t) = 0 ), κ(t) being the curvature of C and n(t) the normal unit vector.
The mapping (t, ρ)→ p(t)+ρn(t) from {(t, ρ) ∈ IR2 | t ∈ [a, b], ρκ(t) < 1} is
locally one-to-one. I.e., this mapping is a regular parametrization of N (C).
The problem of approximating a regularly parameterized manifold with

an algebraic hypersurface, is that there is no reparametrization connecting
points on the manifold with points on the algebraic hypersurface. In addition
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the algebraic hypersurfaces are in most cases infinite, and our interest is
related to the part of the algebraic hypersurface approximating the manifold.
A concept of admissible algebraic hypersurfaces is useful for focusing on the
part of the hypersurface that approximate the manifold. We further want
to avoid the turning of the hypersurface and manifold with respect to each
other in the area of interest. In addition we want to avoid asymptotes, and
possibly fix interpolation of the boundary of the bounded smooth manifold.
In subsection 4.6.1 we defined a simple direction for error measurement to

be used in the approximative implicitization process. The direction defined
is normal to the parametric manifold and based on the gradient of the poly-
nomial q defining the hypersurface representing the algebraic approximation.
This section is structured as follows:

• Based on the simple direction for error measurement a normal field of
the manifold is defined in subsection 4.7.1. This definition requires only
C1 continuity of the manifolds being approximated, not C2 as required
in [Degen:92].

• Then in subsection 4.7.2 we define when a hypersurface resulting from
the approximative implicitization process is admissable.

4.7.1 Normal Field of a Manifold

We are now in the position to define the normal field of a smooth bounded
manifold in IRl with respect to an algebraic hypersurface q(x) = 0.
In [Degen:92] the signed curvature κ(s) of a C2 curve p(s), s ∈ [a, b] with

regular parametrization was used to define the normal field by

N = {p(s) + ρn(s) | s ∈ [a, b], ρκ(s) < 1} (4.28)

with n(s) the normal of p at p(s). The term ρκ(s) is less than 1 to avoid
including the centre of the radius of curvature, and points further apart from
the curve than the centre of radius of curvature. When addressing higher
dimensional manifolds, it is desirable not to handle curvatures. We want
to replace the role of curvature by hyperballs, and thus in the following
discussion reformulate (4.28). The resulting equation contains open balls
instead of curvatures.
All (s, ρ) ∈ N satisfy

∃δ > 0 : B(p(s) + ρn(s), |ρ|) ∩ P(s, δ) = ∅. (4.29)

In this expression the following concepts are used:
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p(s+ε(s))

p(s−ε(s))

p(s))

ρ

B(p(s)+ρn(s),r)

n(s)

p(s)+ρn(s)

Figure 4.1: Geometric building blocks used for defining the normal set of a 1-
manifold in IR2. For 1-manifolds in IR2 the radius of curvature could be used
directly as in [Degen:92]. However, for higher dimensional hypersurfaces this
definition of the normal field allows us not to be concerned with the definition
of curvature.

• An open ball with radius r.

B(p, r) = {y | kp− yk2 < r}.

• A segment of the manifold p defined by an open ball of radius δ around
the point s in the parametrization of p.

P(s, δ) = {p(t) | t ∈ B(s, δ) ∩ Ω} .

Equation (4.29) is based on two geometric components:

• Points p(s) on the curve p.

• Open balls that are tangential to p at p(s) with radius |ρ| and center
p(s) + ρn(s).

The equation expresses that all values of ρ are allowed that make the
intersection of the internal of the ball, and a segment of the curve around
p(s) empty. Figure 4.1 illustrates this for smooth curves in IR2. However,
(4.29) also allows for ρ to be equal to the signed radius of curvature of p(s),
this was not allowed in [Degen:92]. Now the normal field in [Degen:92] can
be reformulated, giving
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N ={p(s) + ρn(s) ∈ IRl | (s, ρ) ∈ S(p)}
with

S(p) =
©
(s, ρ) ∈ IR2 | s ∈ [a, b] ∧ ρ ∈ I(p, s)

ª
,

where

I(p, s) = int {ρ ∈ IR | ∃δ > 0 : B(p(s) + ρn(s), |ρ|) ∩ P(s, δ) = ∅} .

The int() is introduced to remove values of ρ equal to the signed radius of
curvature from the set I(p, s). It should be observed that for ρ = 0 the open
ball is empty. Thus, ρ = 0 is included for all values of s independent of the
behavior of the curve.
The next step is to generalize this expression to:

• Smooth manifolds p of dimension g in IRl.

• The simple direction for error measurement ñ(s) given in definition 55
instead of the normal vector n(s).

According to the premisses we now define the normal field.

Definition 59 (Normal Field) Let p be a smooth manifold of dimension g
in IRl, with parametrization defined over a compact set Ω ⊂ IRg. The normal
field of p(s) with respect to an algebraic hypersurface q(x)=0 is defined by

Nq(p) = {p(s) + ρ ñ(s) ∈ IRl | (s, ρ) ∈ Sq(p)}. (4.30)

Here ñ(s) is the simple direction for error measurement with respect to the
hypersurface q(x)=0 given in definition 55. The set Sq(p), denoted the para-
metrization of the normal field, is given by

Sq(p) =
©
(s, ρ) ∈ IRg+1 | s ∈ Ω ∧ ρ ∈ Iq(p, s)

ª
(4.31)

with

Iq(p, s) = int {ρ ∈ IR | ∃δ > 0 : B(p(s) + ρ ñ(s), |ρ|) ∩ P(s, δ) = ∅} .

Since ñ(s) is defined relative to the gradient of the polynomial q(x) de-
scribing an algebraic hypersurface, ñ(s) is sensitive to the relative behavior
of q(x) and p(s). For (l − 1)-manifolds in IRl, for which the normal can
be used directly, this sensitivity is unnecessary and a negative aspect of the
definition. However, the consequences are not severe, when the polynomial
q(x) used for defining ñ(s), describes the algebraic hypersurface we want to
analyze. Then the vanishing of ñ(s) indicates that q(x) = 0 is not a good
approximation to p(s). This, because ñ(s) = 0 if either:
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• The gradient of q(x) vanish at some point of p(s).

• Some tangent in the tangent bundle of the manifold and the gradient
of q(x) are parallel at the same point on the manifold.

In the examples following we assume that the simple direction for error
measurement is nonvanishing for all s ∈Ω, thus we have that ñ(s) = n(s) for
(l − 1) manifolds in IRl.

Example 60 Let p be a surface in IR3, thus g = l − 1 = 2.

• Assume first that p(s) is a saddle point on p. Then we know that the
Gaussian curvature at p(s) is negative, and thus ρ ∈ hρmin, ρmaxi, with
ρmin < 0 < ρmax.

• Assume then that p(s) is a point with positive Gaussian curvature.
Then either

ρmin < ρmax < 0 ∧ ρ ∈ hρmax,∞i ,

or
0 < ρmin < ρmax ∧ ρ ∈ h−∞, ρmini .

Example 61 Let p(s), s ∈ [a, b] be a segment of a circle of radius 1 in IR2,
with the normal n(s) pointing outward. Then for all s ∈ [a, b], ρ satisfy
ρ ∈ h−1,∞i. Thus, with exception of the circle centre all points in IR2

are part of the normal field. This also corresponds to the requirement in
[Degen:92] where κ(s)ρ < 1. For the circle in question κ(s) = −1 and
ρ > −1 satisfy κ(s)ρ < 1.

In the example following the dependency of the normal filed on the alge-
braic surface it is related to is illustrated.

Example 62 Let p be a circle in IR3. First assume that the algebraic surface
q(x, y) = 0 is the plane in which the circle lies. In this case the simple
direction for error measurement is constant and parallel to the normal of the
plane, and ρ can take on any value.
Then assume that the algebraic surface q(x, y) = 0 is a cone in which the

circle lies. In this case the simple direction for error measurement is parallel
to the normal of the cone at any given point.
In the latter case assume that the algebraic surface q(x, y) = 0 is cylinder.

The simple direction for error measurement is now parallel to the curvature
of the circle at any given point on the circle.
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4.7.2 Definition of Admissible Hypersurfaces

For practical use of approximative implicitization we must be able to evaluate
the quality of the approximation. To do this we introduce the following
concepts for determining when an approximation has a certain quality.

• Admissible approximation. This is a natural concept when we want to
separate two manifolds of possibly different dimensions.

• Boundary interpolating admissable approximation. This is a natural
concept when the approximative implicitization has to take adjacent
manifolds into consideration.

Definition 63 (Admissible Hypersurface) An algebraic hypersurface
q(x) = 0 is called admissible with respect to a regular parameterized smooth
manifold with boundary in IRl, if the following conditions hold:

1. The region of an algebraic hypersurface being used is contained in the
normal field Nq(p) of the manifold being approximated. E.g. there
exists ρ(s) such that for s ∈ Ω the following is valid

• The simple direction for error measurement is nonvanishing

kñ(s)k2 6= 0.

• There are points in the algebraic hypersurface in the direction of
error measurement

q(p(s) + ρ(s)ñ(s)) = 0.

• (s, ρ(s)) ∈ Sq(p), i.e. that (s, ρ(s)) is contained in the parame-
trization of the normal field.

2. The gradient of q(x) is nonvanishing and not normal to the direction
of error measurement, i.e. for s ∈ Ω and θ(s) ∈ [− |ρ(s)| , |ρ(s)|] we
have that

∇q(p(s) + θ(s)ñ(s)) · ñ(s) 6= 0.

3. The branch of the algebraic approximation chosen is the branch closest
to the manifold. I.e.

@r ∈ IRl : q(r) = 0 ∧ (kr− p(s)k2 ≤ ρ(s))

∧
½
(r− p(s)) · ∂p(s)

∂si
= 0, i = 1, . . . , g

¾
∧ r 6= p(s).

.
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Note that
∂p(s)

∂si
6= 0, because p(s) has a regular parametrization.

We denote all admissible hypersurfaces with respect to a manifold p,
A(p).

For a number of applications, when it is desirable to replace a manifold
by algebraic approximations, it is necessary to interpolate the boundaries of
the manifold. This is so often desirable that we introduce a separate name
for these approximations.

Definition 64 (Boundary Admissible Hypersurface) Let the algebraic
hypersurface q(x) = 0 be admissible with respect to a regular parameterized
closed and bounded smooth manifold p in IRl. The hypersurface is called
boundary admissible if the boundary of the manifold lies on the approxi-
mation.

Remark 19 We make a distinction between the notion admissible and the
notion boundary admissible, because the number of conditions for satisfy-
ing interpolation of the boundaries, in many cases, prohibits the use of low
polynomial degrees in the algebraic hypersurface in the approximations. In
[Degen:92] curves in IR2 were addressed and the boundary interpolation only
involved the start and end point. For manifolds of high dimension the number
of conditions to satisfy boundary interpolation is high.

With these definitions we exclude asymptotes, since an asymptote would
introduce asymptotes or breaks in ρ(s) and this is impossible since ρ is C0-
continuous. Singular points in the region where an acceptable hypersurface
can lie, are excluded by condition 2. in the definition. We also avoid ridges
on the polynomial q(x) between p and the intersection of the normal field
of p and q(x) = 0, since the gradient is nonvanishing. If there are more
than one alternative, we take the closest. We do not accept a branch of a
hypersurface as an approximative implicitization if there is another branch
of the algebraic hypersurface that is closer with respect to normal distance
to p at some point.

4.8 Selecting an Approximative Implicitiza-
tion

If the algebraic degree is sufficiently high, we can find the exact algebraic
representation of any curve and surface that is represented by a rational
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polynomial parameterization, see e.g. [Bajaj:93]. However, when we deal
with R-positive manifolds, there is in general internal discontinuities that
prohibit a representation by a single algebraic hypersurface. Generally we
use algebraic representations of low degree for efficiency and stability reasons.
Thus, approximation methods that give a “good” enough solution is of great
interest. By “good” solutions we here mean hypersurfaces that do not have
singularities in the area of interest and are within a given tolerance. It would
be desirable to find approximations that satisfy the conditions for admissible
hypersurfaces given in the previous section.
The approach employed to find a “good” approximation described in this

section has the following steps:

1. Select an approximative null-space for the matrix D, given in (4.1).
This can be done by either performing singular value decomposition
of D and selecting a number of coefficient vectors belonging to the
smallest singular values, or use a direct search for an approximative
null-space, then describe this by orthonormal coefficient vectors.

2. By using a property function ω(b) on the different orthonormal coeffi-
cient vectors, assign property values to the coefficient vectors.

3. Find a coefficient vector b0 with kb0k = 1 that is a linear combination
of the orthonogal vectors spanning the approximative null space and
with a maximal value of ω, the property function.

This approach is inspired by the error given in equation (4.26)

ρ(s) =
q(p(s))

5q(p(s))−θg(s)) · g(s) .

Here g(s) is the direction for error measurement. By maximizing the value
of

min
(s,θ)∈Ω×[−�,�]

| 5q(p(s))−θg(s)) · g(s)|

for some chosen � > 0, we tend to reduce the total error. However, the error
problem is easier facilitated by maximizing the integral of the expression
above in the region in question. To measure the behavior of the denominator
in this expression, the following integral can be usedZ

Ω

�Z
−�

(5q(p(s))−θg(s))) ·g(s)dθds. (4.32)

This integral has some attractive properties:
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• If5q(p(s))−θg(s) )·g(s) change sign in the region of interest, the sign
change tends to reduce the absolute value of the integral. As ridges and
sinks introduce a near vanishing gradient, maximizing (4.32) tends to
minimize the existence of near vanishing gradients.

• If 5q(p(s))−θg(s) )·g(s) has no sign changes, then this tends to in-
crease the absolute value of the integral.

• If 5q(p(s))−θg(s) ) and g(s) are nearly parallel, the contribution to
the total value of the integral is significant. Thus, the maximization
favors solutions where the gradient of q and the direction for error
measurement are parallel.

To evaluate these integrals exactly (if possible) is resource consuming.
Thus it is practical to employ numeric integration when the property func-
tions are defined.
The first step is to define the features we require in the property functions.

Definition 65 (Gradient property function) Let ω : IRM̃ −→ IR satisfy

ω(a+ b) = ω(a) + ω(b)
ω(ca) = c ω(a)

then ω is a gradient property function.

We make in the lemma following all possible combinations of r orthonor-
mal vectors bi, i = 1, . . . , r by the function

b(α) =

rX
j=1

αjbjs
rP

j=1

α2j

(4.33)

with
α = (α1, . . . , αr) 6= 0.

Lemma 66 Let b(α) be defined as in (4.33) then

kb(α)k2 = 1.
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Proof.

b(α) · b(α) =

rX
j=1

αjbjs
rP

j=1

α2j

·

rX
j=1

αjbjs
rP

j=1

α2j

=

rP
j=1

α2j

rP
j=1

α2j

= 1.

Nowwe find the maximum of the gradient property function for a selection
of orthonormal coefficient vectors.

Lemma 67 Let let b(α) be defined as in (4.33), let ω be a gradient prop-
erty function, let the vectors b1, . . . ,br be orthonormal and assigned property
values

ωi = ω(bi), i = 1, . . . , r

with some ωj 6= 0, j = 1, . . . , r. Then

max
α6=0

|ω(b(α))| = |ω(b(α0))| ,

where

α0 = (α01, . . . , α
0
r) =

(ω1, . . . , ωr)s
rP

j=1

ω2j

. (4.34)

Proof. By definition 65 we have

ω(b(α)) = ω(

rX
j=1

αjbjs
rP

j=1

α2j

) =

rX
j=1

αjω(bj)s
rP

j=1

α2j

=

rX
j=1

αjωjs
rP

j=1

α2j

.

The maximum value of ω(b(α)) has to satisfy

0 =
∂ω(b(α))

∂αi
=

ωi

s
rP

j=1

α2j −
rX

j=1

αjωj
αis
rP

j=1

α2jÃs
rP

j=1

α2j

!2 =

ωi

rX
j=1

α2j − αi

rX
j=1

αjωjÃ
rX

j=1

ω2j

!5/2 .
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The values in (4.34) satisfy this requirement by settingα = α0 in the equation
above. Further we have

ω(b(α0)) =

rP
j=1

α0jω(bj)s
rP

j=1

¡
α0j
¢2

=
rX

j=1

α0jωj
1s

rP
j=1

¡
α0j
¢2 =

vuut rX
j=1

ω2j .

Removing the components of b(α0) from b1, . . . ,br we get

b0i = bi − [bi · b(α0)]b(α0) = bi − αib(α
0), i = 1, . . . , r.

The value of ω for choosing b0i, i = 1, . . . , r as arguments is

ω(b0i) = ω(bi − αib(α
0)) = ωi − αiω(b(α

0))

= ωi −
ωis
rP

j=1

ω2j

vuut rX
j=1

ω2j = 0.

We can thus make r − 1 orthonogal coefficient vectors b00i , i = 1, . . . , r − 1
from b0i, i = 1, . . . , r, , with

ω00j = ω(b00j ) = 0, j = 1, . . . , r − 1.

Now adding b00r= b(α
0) we can make any combination b00(α) of the type

(4.33) based on b00i , i = 1, . . . , r. Now

|ω(b00(α)| =

¯̄̄̄
¯̄̄̄

rP
i=1

αiω
00
ir

rP
i=1

α2i

¯̄̄̄
¯̄̄̄ =

¯̄̄̄
¯̄̄̄ αrω

00
rr

rP
i=1

α2i

¯̄̄̄
¯̄̄̄ ≤ |ω(b(α0))| .

Thus, the choice of α = α0 in (4.34) gives the gradient property function an
maximal absolute value.

The next step is to show that integration of 5qb(p(s))−θg(s) )·g(s)
satisfies the requirements of a gradient property function, and thus can be
used to find a “good” solution.
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Lemma 68 Let the function ω : IRM̃ −→ IR be defined by

ω(b) =

Z
Ω

�Z
−�

(5qb(p(s))−θg(s))) ·g(s)dθds.

Here qb(x) is an algebraic hypersurface with coefficients

b = (b1, . . . , bM̃)
T .

Then ω(b) satisfies:

ω(a+ b) = ω(a) + ω(b)
ω(ca) = c ω(a).

Proof. Using the definition of the algebraic hypersurface in (3.3), we get

ω(a+ b) =

Z
Ω

�Z
−�

5 (qa+b(p(s)−θg(s))) ·g(s)dθds

=
X
i∈I(m)

(ai + bi)
m!

i!

Z
Ω

�Z
−�

¡
5
¡
βi
¢
(p(s)−θg(s))

¢
·g(s)dθds

= ω(a) + ω(b).

Further

ω(c a) =

Z
Ω

�Z
−�

(5qca(p(s)−θg(s))) ·g(s)dθds

=
X
i∈I(m)

c ai
m!

i!

Z
Ω

�Z
−�

¡
5
¡
βi
¢
(p(s))−θg(s))

¢
·g(s)dθds

= c ω(a).

The following theorem connects the results in lemma 68 and lemma 67 to
approximative implicitization, and establish a method for choosing a “good”
coefficient vector from an approximative null space of the matrix D.

Theorem 69 Let the gradient property function of the combination of an
algebraic hypersurface combined with a properly parameterized C1-continuous
manifold p(s) be defined by

ω(b) =

Z
Ω

�Z
−�

(5qb(p(s)−θg(s))) ·g(s)dθds, (4.35)
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and let b1, . . . ,br satisfying bi ·bj = δi,j, i, j = 1, . . . , r, be r approximations
to the manifold. Then the hypersurface with coefficient vector

b0 =
rX

i=1

ωibis
rP

j=1

ω2j

(4.36)

satisfies
max
α6=0

|ω (b(α))| = ω (b0) ,

where b(α) given in (4.33) is

b(α) =

rP
j=1

αjbjs
rP

j=1

α2j

.

Proof. Combining lemma (68) and lemma (67) proves the theorem.

Remark 20 Any numeric approximation eω(b) to (4.35) satisfying
eω(a+ b) = eω(a) + eω(b)eω(ca) = c eω(a)

is a gradient property function and can be used for choosing a “good” coeffi-
cient vectors from an approximative null space of D.

4.9 AlgorithmApproximative Implicitization

In the previous sections we have addressed different aspects of the approx-
imative implicitization algorithm sketched in the start of the chapter. We
now give a more detailed version of this algorithm related to the findings in
these sections.

Algorithm Approximative Implicitization

1. Choose algebraic degree m of the approximative implicitization.

2. Choose barycentric coordinate system to be used in the approxi-
mation such that p(s) is inside the simplex defining the barycen-
tric coordinate system.
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3. Build the D matrix combining the algebraic hypersurface and the
R-positive manifold, by repeated use of a multiplication algorithm
satisfying the requirements to a PosProd Algorithm in definition
25.

4. Find an approximative null space of D by either:

(a) Singular value decomposition, see e.g. [Numres:88] or [Stewart:73].
(b) Direct search for the null space, see Section 4.4.5.
(c) Other methods for finding approximative null spaces.

5. Pick the coefficient vector from the approximative null space that
either have the maximal absolute value of

ω(b) =

Z
Ω

�Z
−�

5qb(p(s)−θg(s)) · g(s)dθds,

or a numeric approximation thereof, see theorem 69 and remark
20.

6. Check if the hypersurface is admissible, see definition 63. If not
admissible increase the number of vectors in the approximative
null-space and go to 5.

7. Check if the hypersurface is within an acceptable distance from
p(s), e.g. using (4.26).

4.10 Approximative Implicitization of a Num-
ber of Manifolds

There are a set of applications for a simultaneous approximation of more
than one manifold. Among these are:

• Controlling the shape of the algebraic approximation in a region larger
than covered by one manifold.

• Model an algebraic hypersurface approximating or interpolating a set
of manifolds. E.g. in IR3 a mesh of curves can be approximated by
such a technique.

• Make a rough approximation of a set of manifolds to simplify a complex
structure of manifolds.
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• Combine a manifold with additional problem dependent manifolds to
direct the hypersurface to behave in a specific way. E.g. approximate
the boundary and a translate of the boundary to make a hypersurface
containing the boundary but being near normal to the manifold along
the boundary. The procedure applies to a segment of the boundary as
well.

The dimension of the manifolds approximated is insignificant in the theo-
rem following. They can touch in a smooth way or they can be separated by
some distance. Some of the manifolds can be the target of the approximation.
Other manifolds can be used to control the behavior of the approximation
in a given region. The following theorem shows that we can combine the
D matrices of the different manifolds to build a matrix for approximating a
number of manifolds.

Theorem 70 Let pi(si), i = 1, . . . , r be R-positive manifolds in IRlof re-
spectively dimension gi, i = 1, . . . , r with a regular parametrization si ∈ Ωi.
The combination of these manifolds with an algebraic hypersurface q of total
degree m satisfies

rX
i=1

(q(pi(si)))
2 ≤

°°°°°°°
⎛⎜⎝ D1

...
Dr

⎞⎟⎠b
°°°°°°°
2

2

, (4.37)

where q(pi(si)) = (Dib)
Tαi(si), i = 1, . . . , r.

Proof. Remembering (4.3) we get:

q(pi(s))
2 =

rX
i=1

((Dib)
Tαi(si))

2

≤
rX

i=1

kDibk22

=
rX

i=1

bTDT
i Dib

= bT
¡
DT
1 · · · DT

r

¢⎛⎜⎝ D1
...
Dr

⎞⎟⎠b
=

°°°°°°°
⎛⎜⎝ D1

...
Dr

⎞⎟⎠b
°°°°°°°
2

2

.
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The result is in correspondence with (4.3) when we break a NURBS rep-
resented manifold into rational Bernstein basis represented manifolds by in-
troducing the Bernstein knot vector. However, the result is more general,
because the manifolds can be of different dimension with no correspondence
of the parametrizations.

Remark 21 We can try to find a hypersurface separating two manifolds by
building a matrix of the type (4.37) and to use this to make an approximative
implicitization. The result will be a hypersurface that approximates both the
manifolds. If the number of degrees of freedom is not large enough to do this,
the result is a near singular region close to the manifolds. If the algebraic
degree is high enough, the hypersurface interpolates both manifolds. Thus, the
resulting hypersurface is not suited for the separation of the two manifolds.
In the next section we give a more convenient approach for separation of
manifolds by a hypersurface.

4.11 SeparatingManifolds Using Approxima-
tive Implicitization

Let p1(s1) and p2(s2) be two R-positive manifolds of possibly different di-
mensions. Let b be the coefficient vector of a hypersurface q(x)=0 in IRl

that is admissible with respect to either manifolds. The combinations of the
bounded manifolds and the hypersurface are

q(p1(s1)) = (D1b)
Tα1(s1) = f1α1(s1)

q(p2(s2)) = (D2b)
Tα2(s2) = f2α2(s2).

If either

(f1)i < a, i = 1, . . . , Ñ1 ∧ (f2)i > a, i = 1, . . . , Ñ2,

or
(f1)i > a, i = 1, . . . , Ñ1 ∧ (f2)i < a, i = 1, . . . , Ñ2,

then the two bounded manifolds p1(s1) and p2(s2) do not intersect. When
we can establish separation between two manifolds the next question is how
far the manifolds are apart. In (4.26) we established that the distance from
a point on a manifold with regular parametrization to the algebraic hyper-
surface can be expressed by

ρ(s) =
q(p(s))

5q(p(s)−θ(s)g(s)) · g(s) ,
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Figure 4.2: The Bezier curve used as example for approximation with 5, 6
and 7 degree algebraic curves. The vertices of this curve are (1, 1), (0,−1),
(1, 1), (2,−1), (3, 2), (4, 7), (5,−1), and (6, 1).

where | θ(s) |≤| ρ(s) | and θ(s)ρ(s) ≥ 0. We now want to find the intervals
limiting the distance [v1,min, v1,max] from the algebraic hypersurface to the
manifold p1(s1)

v1,min = min
s1∈Ω∧|θ|≤ρ(s1)

q(p1(s1))

5q(p1(s1)−θ(s1)g1(s1)) · g1(s1)

v1,max = max
s1∈Ω∧|θ|≤ρ(s1)

q(p(s))

5q(p1(s1)−θ(s1)g1(s1)) · g1(s1)
.

The interval [v2,min, v2,max] related to the distance from the hypersurface to
p2(s2), is found in a similar way. These intervals can then be used as an
estimate of the distance between the manifolds.
Candidates for choosing surfaces for testing separation are hypersurfaces

approximating one of the manifolds. If we know that certain regions are
close, we can force the approximation to be very accurate in these regions by
adding constraints.

Remark 22 This approach for separation of surfaces has been employed in
the SISL library when boxing techniques are not adequate. This is especially
interesting if the surfaces are nearly coincident. It is then possible to deter-
mine whether there is a region of coincidence or not.
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4.12 Examples of Approximative Implicitiza-
tion

In this section we deal with some examples on approximative implicitization.
The curve we have selected to use as an example is shown in figure 4.2. This
is a degree seven Bezier curve with vertices:

(1, 1), (0,−1), (1, 1), (2,−1), (3, 2), (4, 7), (5,−1), (6, 1).

Since we can find straight lines that intersect this curve four times, the
algebraic degree of the curve is at least 4, thus to try with approximations
with lower algebraic degree than four, do not succeed. However, when trying
with a degree 4 approximative implicitization, the result was an approxi-
mation with asymptotes, and thus no curve that is admissable was found.
However, degrees 5, 6 and 7 give admissable approximations. Approximation
of subparts of the curve with degree 4 and lower can also succeed when the
intervals are sufficiently small. In the examples we have imposed interpola-
tion of start and end of the Bezier curve, e.g. that the point (1, 1) and (6, 1)
are interpolated. The barycentric coordinate system used when building the
Dmatrix have the corners (−3,−1), (10,−1) and (2, 10). For finding the sin-
gular values of D the standard singular value decomposition in Mathematica
has been used. Mathematica has also been used for generating the plots in
this section. The direct elimination method in Section 4.4.5 is slower and in
general gives similar approximations, but with somewhat larger errors.
Remembering that the number of coefficients in the algebraic curve of

degree m is (m+1)(m+2)
2

. Thus, D has the dimension

(7m+ 1)× (m+ 1)(m+ 2)

2
.

When imposing interpolation of start and end of p(s), two degrees of freedom
are used. Thus, the resulting dimension of D is respectively 36× 19, 43× 26
and 50 × 34 for the approximative implicitization of degrees 5, 6 and 7. In
the examples we get respectively 19, 26 and 34 singular values.

4.12.1 Example of 5th Degree Approximation

The singular values of the D are shown in the following table:

1 17 18 19
1.12 . . . 0.000831 0.000280 0.0000396
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Figure 4.3: A plot for the fifth degree approximative implicitization of the
term ∇q(p(s)) · n(s) along the curve approximated, when choosing the co-
efficients corresponding to the smallest singular value of D to define the
approximative implicitization. n(s) is the function describing the normals to
p(s). If the expression ∇q(p(s)) · n(s) is zero for some value of s ∈ [0, 1],
then the approximation is not admissable, either because the gradient of the
approximation is perpendicular to the normal of p(s) or because ∇q(p(s)) ·0
giving a singular ornear singular approximation. The plot shows that the
approximation is well behaved.

Note that we have a gradual decrease from left to right. Further there are
no singular values close to the relative accuracy of 16 digits used in the
calculation. When choosing the coefficients corresponding to the smallest
singular value of D to define the approximative implicitization, we get an
admissable approximation to p(s). A plot of the expression

∇q(p(s)) · n(s)

along p(s) is shown in figure 4.3. The plot indicates that the approximation
is well behaved although the expression have many oscillations. Figure 4.4
shows the error of this approximation. Note that the error is largest in the
interval where ∇q(p(s)) · n(s) has the smallest values.
In figure 4.5 we show a contour plot of the 5th degree approximative

implicitization to p(s).
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Figure 4.4: The error of the approximative implicitization of degree 5 to p(s).
Note that the error is large where the expression ∇q(p(s)) · n(s) plotted in
the previous figure is small.

y

x

Figure 4.5: Contour plot of the 5th degree approximative implicitization to
p(s). By identifying the point (1, 1) in the plot and following the adjacent
curves to the point (6, 1), we recognize the shape of p(s). The plot shows
that regions where the expression ∇q(p(s)) · n(s) = 0 are not too close to
p(s).
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Figure 4.6: A plot of the term∇q(p(s))·n(s) along the curve p(s) for the ap-
proximative implicitization of 6th degree. The approximative implicitization
corresponds to the smallest singular value.

4.12.2 Example of 6th Degree Approximation

The singular values of D are shown in the following table:

1 24 25 26
1.23 . . . 1.147× 10−5 5.82× 10−6 4.246464737776847× 10−7

Note that we have a gradual decrease from left to right. Further there are no
singular values close to the relative accuracy of 16 digits used in the calcu-
lation. Once more we choose the approximations belonging to the smallest
singular values. The behavior of ∇q(p(s)) · n(s) is shown in figure 4.6. The
error function is shown in figure 4.7, and the contour plot in figure 4.8.

4.12.3 Example of 7th Degree Approximation

The singular values of D when the algebraic degree is chosen to be 7 are
shown in table

1 32 33 34
1.30 . . . 1.09× 10−7 4.23× 10−15 2.92× 10−17

Note that we have a significant jump in singular values between value 32
and value 33, thus indicating that a very close fit to the exact algebraic
representation is found. We have chosen to make an optimal solution of the
approximations belonging to the two smallest singular values according to
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Figure 4.7: Plot of error function for the 6th degree approximative implicit-
ization of p(s).

y

x

Figure 4.8: Contour plot of the 6th degree approximative implicitization of
p(s). By identifying the point (1, 1) in the plot and following the adjacent
curves to the point (6, 1) we recognize the shape of p(s). The plot shows
that regions where the expression ∇q(p(s)) · n(s) = 0, regions where either
the curve normal is orthogonal to the gradient or where the gradient vanish
are not too close to p(s).

105



s

0.2 0.4 1.00.80.6

Figure 4.9: A plot of the term ∇q(p(s)) ·n(s) along the curve approximated
when choosing the coefficients corresponding to the two smallest singular
values of D to define approximative implicitization of degree 7 to p(s). We
see that one of the approximations has value zero of ∇q(p(s)) · n(s) at two
places and is thus not an admissable solution. We have combined the two
approximations to try to find an even better solution, however, the differences
between the acceptable solution and the combined solution do not show on
this plot, they are both represented by the gray curve.

method in section 4.8 by approximating the integral of ∇q(p(s)) · n(s) by
sampling 100 points on the curve and evaluating the sum of these values.
The plots of the approximation of ∇q(p(s)) · n(s) for both solutions as well
as their ”optimal” combination is shown in figure 4.9. The error function is
shown in figure 4.10, and the contour plot is shown in figure 4.11.
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Figure 4.10: The error of the approximation with a 7 degree algebraic curve
to p(s) is varying-between −1.54× 10−13 and 1.98× 10−13 and is thus very
close to the noise level of the digital representation with 16 digits accuracy
used in the example. Because of this the plot has a ragged nature and the
first and last points, which should be exactly at the zero line, are also affected
with noise.
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Figure 4.11: Contour plot of the 7th degree approximative implicitization of
p(s). By identifying the point (1, 1) in the plot and following the adjacent
curves to the point (6, 1) we recognize the shape of p(s). The plot shows
that regions where the expression ∇q(p(s)) · n(s) = 0, e.g. regions where
either the curve normal is orthogonal to the gradient or where the gradient
vanish are not too close to p(s).
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Chapter 5

Approximation of Intersection
Results

A major challenge in the implementation of intersection algorithms is to rep-
resent the intersections found in a proper way. In 3D CAD-systems boundary
structures are used to connect surfaces that describe the outer shell (and pos-
sibly inner shells) of a volume. When making the union or intersection of
two volumes, the first step is to intersect the shells of the volumes. The
intersection of the shells is performed by intersecting the surfaces composing
the shells. The curves from the surface intersections are then assembled in a
proper way to trim away pieces of the surfaces no longer needed. Then new
shells are built to describe the resulting volume object(s).
The results of a surface surface intersection are points, curves and regions

of surfaces. The surface regions can be represented by a curve describing the
boundary of the intersection region. The methods for the representation of
intersection curves are to a great extent based on piecewise cubic Hermite
interpolation with GC1 or GC2 continuity between adjacent curve segments.
Cubic Hermite interpolation is both used for 2D curves in the parameter
domain of the surfaces and for 3D curves. The most common intersection
representations in CAD-systems are addressed in Section 5.1.
When intersecting manifolds of higher dimension than two, we can expect

to get intersection results that must be described by manifolds of dimension
2 or higher. A first choice is to resort to cubic Hermite interpolation defined
over simplical domains of dimension d ≥ 2. However, the discussion in
Section 5.2 shows that a piecewise local cubic Hermite interpolation over
simplical domains of dimension d ≥ 2 only has GC0 continuity between
adjacent polynomial pieces. Thus, either higher degree Hermite interpolation
has to be employed or other approaches have to be found. One such approach,
piecewise algebraic approximation in the parameter domain of the manifolds,
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is discussed in Section 5.3. This approach can be based on the approximative
implicitization, described in chapter 4.
In Section 5.4 we address methods for approximation of algebraic repre-

sented manifolds, and give a general method that has the same convergence
rate as the best approximation satisfying the same interpolation constraints.
Tomodel the shape of the approximation the methodmakes use of the degrees
of freedom remaining in the polynomial interpolant, when the interpolation
constraints are satisfied. Special attention is given to Hermite approxima-
tion of 2D curves in Chapter 6. These results are further elaborated on the
approximation of circle and ellipse segments in Chapter 7.

5.1 Intersection Representation within CAD

The mostly used intersections in 3D CAD-systems are:

• Curve curve intersection in IR2 and IR3.

• Curve surface intersection in IR3.

• Surface surface intersection in IR3.

Results of such intersections can be described as objects of the following
categories:

• Intersection points (0-manifolds). These are represented as points
in respectively IR2 and IR3, and as a points in the parameter domain
of the manifolds (curves/surfaces) being intersected.

• Intersection curves (1-manifolds). These are traditionally approx-
imated by parametric curves in IR3. In the parameter domains of
the surfaces being intersected, the intersection curves are also approx-
imated by parametric curves. In certain cases exact representation of
the intersection curve is present:

— When the intersection of a curve and another manifold (curve,
surface or volume) coincide over an interval of the curve.

— When the intersection is along a segment of a constant parameter
line in the parameter domain of a surface. In these cases a segment
of the constant parameter line, is an exact representation. The
image of the segment of the constant parameter line is an exact
3D representation of the intersection curve.
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— For certain intersection constellations of surfaces the intersection
curve is a first or second degree algebraic curve. In geometric mod-
elers based on algebraic surface representation, much energy have
been put into developing algorithms identifying such situations.

Geometric Hermite interpolation is the standard method for approxi-
mating intersection curves. [Sederberg:91], [Höllig:95] and [Höllig:96]
can be consulted for the theoretical background of geometric Hermite
approximation of intersection curves. In [Sederberg:91] it is pointed
out that the algebraic degree of the intersection curve between two
bicubic patches is a curve with implicit equation of degree 324. It is
also pointed out that a representation of such a parametric intersection
curve, as an exact parametric equation, is non-existent.

• Intersection regions on surfaces (2-manifolds). Intersection regions
are traditionally not handled in CAD-systems, because traditional in-
tersection algorithms only to a limited degree handle coincident regions
in two surfaces. In Chapter 2 we discussed the introduction of intersec-
tion tolerances, and proposed an approach for representing intersection
regions.

The cubic Hermite interpolant is often represented in a Bernstein basis,
and is thus a R-positive 1-manifold, see remark 13 on page 52 in Chapter
3. Often more than one cubic Hermite segment is required to approximate
an intersection curve within proper tolerances. Different strategies for deter-
mining the segmentation of the Hermite approximation exist. Two of these
are:

• Bisection. Two points on the intersection curve are known. A Her-
mite approximation of the intersection curve is made between these
points. If the approximation satisfies the accuracy and shape quality
requirements the segment is accepted. However, if the approximation
does not satisfy these requirements, the approximation problem is split
into two subproblems by finding a point on the intersection curve ly-
ing between the two end points. This new point is used to define two
subsegments. The bisection process is then performed on each of the
subsegments. More information on the bisection process can be found
in [Sederberg:91].

• Tracing/Marching. From a point p0 on the intersection curve determine
a step length based on e.g. curvature estimates or a fixed step length
s. Find a point on the intersection curve by first moving a distance
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equal to the step length s in the direction of the curve tangent t0 at p0.
Then iterate onto the intersection curve by constraining the interation
to:

— A plane that has t0 as normal vector and is located at a distance
s in the direction t0 from p0.

— A sphere with center at p0 and radius s.

If the iteration fails, reduce the step length until the iteration suc-
ceeds. Approximate the curve segment found. If the approximation
does not satisfy accuracy and shape requirements resort to bisection.
In the SISL library, see [SISL:94], such a combined tracing and bisec-
tion strategy is employed. The efficiency of the combined tracing and
bisection strategy is dependent on finding good initial step lengths s
to avoid bisection. However, too small initial step lengths increase the
numbers of segments that are required for approximating the intersec-
tion curve within a given tolerance. A survey of tracing algorithms
can be found in [Krishnan:96] where also the main problems of trac-
ing/marching algorithms are addressed:

1. Converging back to the curve.

2. Component jumping.

3. Inability to handle singularities and multiple branches.

The approximation methods to be used, are not addressed in detail in
this chapter. In the next chapter, Chapter 6, we address the approxi-
mation of curves in IR2 and show that algebraic curves in the parameter
domain of a surface can be approximated with O(h6) accuracy by con-
trolling the tangent lengths of the cubic Hermite interpolant.

5.2 Cubic Hermite Approximation of Inter-
section Results

To ensure local GCr continuity of triangular polynomial patches in IR3, the-
orem 9.1 on page 410 in [Hoschek:93] states that the total polynomial degree
n has to satisfy n ≥ 4r + 1. Thus, to achieve GC1-continuity between two
patches we have to resort to polynomials of total degree 5. Thus, cubic
triangular polynomial patches can only be joined with GC0 continuity. Cu-
bic interpolation of manifolds of higher dimensions than two defined over
simplical domains, can similarly only be joined by GC0 continuity.
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Another description of these limitations is:

• In the case of cubic interpolation of curves, the number of vertices are
four. Only two vertices are allocated to ensure GC0 continuity. The
two other vertices can be employed to ensure GC1 continuity.

• For surfaces in IR3 nine out of ten vertices are used for ensuring GC0

continuity. Thus, only one vertex remains and these remaining degrees
of freedom are too few to ensure GC1 continuity.

• For volumes and higher dimensional manifolds, all vertices are located
on the boundary. They are thus all dedicated to ensure GC0 continuity.

5.3 Algebraic Approximation of Intersection
Results

In CAGD-systems using parameterized surfaces, the main use of curves in
the parameter domain of surfaces is to describe the location of intersection
curves in the surfaces. The curves in the parameter domain are further used
as building blocks in the process assembling trimming structures dedicated to
removing parts of the surfaces. One of the interrogation functions in CAGD
systems utilizing the trimming information is the function for deciding if a
point is on a trimmed surface or not.
As we have mentioned earlier, curves in the parameter domain of a surface

in IR3 are in general approximated by 2D parametric piecewise polynomial
curves. Such approximations require, in the general case, huge amounts of co-
efficients to be sufficiently accurate. It is also well known that the transfer of
trimmed surfaces between systems from different CAD-vendors is a complex
issue. Comments of this problem can e.g. be found in [IVF:94] appendix 4,
page 6. The main reason for this is that the CAD-vendors currently (in 1996)
use somewhat different strategies for solving approximation problems related
to trimming, and somewhat different strategies for trying to compensate for
problems resulting from the approximation of intersection curves.
We analyze in this section the consequences of introducing algebraic rep-

resentation of curves in the parameter domain to perform trimming of para-
metric represented surfaces. The current method for representing trimming
information is used in most CAD-systems, and is part of the ISO-standard
ISO 10303 (STEP), “Product data representation and exchange”. Thus we
can not expect a new method to immediately replace the current method.
However, it can be a supplement and possibly an alternative for internal
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representation in the 3D CAD-systems. Another possibility is to use the
algebraic representation as an intermediate stage for making better approx-
imations to curves in the parameter domain of surfaces.

Definition 71 Let p : Ω → IR3 be a parametric surface (2-manifold) in
IR3 defined over the compact domain Ω ⊂ IR2 and let the trimming function
associated with p be denoted τ . Where τ : Ω → IR and τ is C0—continuous.
p is trimmed according to the following rules:

τ(s, t) < 0 =⇒ (s, t) is outside the domain of the trimmed surface.
τ(s, t) > 0 =⇒ (s, t) is inside the domain of the trimmed surface.
τ(s, t) = 0 =⇒ (s, t) is on the boundary or inside the domain

the trimmed surface.

Provided that trimming functions can be defined in an efficient and accu-
rate way, just one evaluation of a trimming function is needed to determine
if a point with known location in the parameter domain is outside a trimmed
version of the surface.

Lemma 72 Given p : Ω → IR3 a parametric surface defined over the com-
pact domain Ω ⊂ IR2 with no parts trimmed away. Then any trimming
function associated with p satisfy

τ(s, t) ≥ 0, (s, t) ∈ Ω.

Proof. Definition 71 assures this result.
The trimming function of a nontrimmed surface can be assigned a con-

stant positive value.

Example 73 In figure 5.1 we show an example of a typical trimming curve
in the parameter domain of a (rational) parametric NURBS surface p of
polynomial orders (k1, k2). Assuming that a trimming curve is a result of the
intersection of a parametric surface of orders (k1, k2) and an algebraic surface
of total degree m, then the trimming curve can be described by a piecewise
algebraic curve of degrees (m(k1− 1),m(k2− 1)) in the parameter domain of
p.
Thus if m = 2 and k1 = k2 = 4 the algebraic curves are described by a

tensor product B-spline function of degrees at most (6, 6). This results in a
total algebraic degree of 12 for the trimming curves.
From Section 4.5 table 4.4 on page 81 we remember that for m = 3 the

convergence rate of the algebraic approximation to a rational Bernstein basis
represented parametric surface is O(h5). We can expect that approximating
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Figure 5.1: An example of a trimming curve and the segmentation of the
parameter domain of the surface into a piecewise algebraic trimming function.
Assuming that the surface to be trimmed is a NURBS surface, we can base
the initial grid on the knot vectors of the NURBS surface and subdivide each
mesh as required by the representation into triangular and rectangular parts.

a subset of a NURBS surface with degree 3 algebraic surfaces and then in-
tersecting this approximation with another NURBS surface, results in fairly
good approximations of the trace of the intersection curve. For m = 3 and
k1 = k2 = 4 we get algebraic curves of degrees (9, 9) given a total degree of
18.

Lemma 74 Given p : Ω → IR3 a parametric surface defined over the com-
pact domain Ω ⊂ IR2. Let pτ1 be p with the trimming function τ 1(s, t)
assigned and let pτ2 be p with the trimming function τ 2(s, t) assigned. Then

pτ1 ∩ pτ2 ⊆ pτ1τ2 .

Proof.

pτ1 ∩ pτ2 = {p(s, t) | τ 1(s, t) ≥ 0 ∧ τ 2(s, t) ≥ 0}
⊆ {p(s, t) | τ 1(s, t)τ 2(s, t) ≥ 0} = pτ1τ2.

The consequence of the lemma is that to perform a stepwise trimming
operation just by multiplication of trimming functions, is not straight for-
ward. Phantom regions can appear in addition to a significant increase in the
polynomial degree of the trimming functions. In addition singular points are
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Classification Inside τ 1 Partly inside τ 1 Outside τ 1
Inside τ 2 Inside Use τ 1 Outside
Partly inside τ 2 Use τ 2 Detailed analyses Outside
Outside τ 2 Outside Outside Outside

Table 5.1: Classification of the possible trimming result when two trimming
functions τ 1(s, t) and τ 2(s, t) are applied to a subset of the parameter domain
of a parametric surface.

introduced at points where algebraic curves from different trimming functions
meet. Thus to base the trimming on products has a number of disadvantages.
Since we deal with NURBS surfaces or rational Bezier surfaces it is nat-

ural to use a piecewise polynomial description of the trimming functions over
the parameter domain Ω. By doing so, we can subdivide a region to enable
description of a trimming function combining two existing trimming func-
tions. The first level of piecewise subdivision can be to use the subdivision
resulting from the piecewise description of the surface. In figure 5.1 the rec-
tangular grid can typically originate from the original piecewise description of
a NURBS surface. When making the trimming functions over the subregions
of Ω, we come up with the cases described in table 5.1. We see from this
table that only the case where a subregion is partly inside both the trimmed
surfaces described by respectively τ 1(s, t) and τ 2(s, t), a detailed analyzes
has to be performed.
In this case we have basically three situations:

• The algebraic curves described by τ 1(s, t) = 0 and by τ 2(s, t) = 0 don’t
intersect in the subregion. Subdivide the subregion such that the curve
τ 1(s, t) = 0 is in one part, and τ 2(s, t) = 0 is in another part.

• The algebraic curves described by τ 1(s, t) = 0 and by τ 2(s, t) = 0
intersect in the subregion in a single point. Make a subdivision through
the intersection point such that the piece of τ 1(s, t) = 0 to be used in
the combined trimming is in one part, and the piece of τ 2(s, t) = 0 to
be used in the combined trimming is in another part.

• More than one intersection point exist between τ 1(s, t) = 0 and τ 2(s, t) =
0 in the subregion. Subdivide to separate single intersection points and
possibly coincidence between the curves into separate parts.

To make the continuity requirements on the trimming functions less re-
strictive, by requiring that the trimming functions are C0 inside the sub-
regions, but to allow jumps between subregions, we get an efficient way of
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Figure 5.2: Example of a trimmed region where the trimming curves can
not be separated by straight line segments. The two elliptic trimming curves
intersect tangential, thus they can not be separated by straight line segments.

constructing the combined trimming function by subdividing the parent trim-
ming functions τ 1(s, t) and τ 2(s, t). Cases exist when the trimming curves
resulting from the combination of two trimming functions cannot be sepa-
rated by straight line segments. One such example is shown in figure 5.2.
To handle these cases, curved boundaries of trimming subregions have to be
introduced.

5.4 Approximation of Algebraic Represented
Manifolds

In this section we present a method for approximating manifolds that either
are contained in one algebraic represented hypersurface, or in the intersection
of a number of algebraic represented hypersurfaces. The manifolds used for
the approximation are polynomial nonrational and R-positive, see definition
32 on page 51 in Chapter 3. The method has a number of interesting features:

• The approximation is required to satisfy a number of interpolation
constraints. Interpolation constraints include but are not restricted to
points and tangent directions.

• When the interpolation constraints are met, a number of degrees of
freedom remains in the polynomial interpolant. The method use these

116



remaining degrees of freedom to model the shape of the approximation.
This is done in such a way that the convergence rate is the same as for
the best approximation method using the same polynomial basis and
satisfying the same interpolation constraints.

• By doing numeric experiments with the method, the approximation
rate of the best approximation with a given polynomial basis and given
interpolation constraints can be found.

• The method can be used on manifolds contained in a single algebraic
hypersurface, or manifolds contained in the intersection of a number of
algebraic hypersurfaces.

• The method is based on finding the minimum of the square sum of
the coefficients of the combination q(pv(s)) of pv(s), the manifold used
for the approximation, and the algebraic hypersurface q(x) = 0 being
approximated. If the algebraic description of the manifold being ap-
proximated is contained in the intersection of a number of algebraic
hypersurfaces qi(x) = 0, i = 1, . . . , g, then we minimize the sum of
the square sum of all the coefficients of all combinations qi(p(s)). We
assume that all combinations qi(p(s)) are expressed in a PosProd basis.

The next step is to describe the manifold used in the approximation. Since
we shall require interpolation of several points, and allow for the interpolation
of tangents, we call this manifold an interpolant.

Description of Interpolant. In definition 32 on page 51 in Chapter 3 we
described the R-positive manifold of dimension g. We here address the
nonrational variant, and thus describe the interpolant by the R-positive
manifold

p(s) =
X
i∈In

ciBi,n(s), s ∈Ω.

Here Bi,n(s), i ∈ In are polynomial PosProd basis functions of degree
n.

To approximate a manifold of dimension g, we require the interpolation
of at least g + 1 linearly independent points. In addition to the points
being interpolated, we can allow for the interpolation of a number of
tangent directions and expressions dependent on higher order partial
derivatives. The remaining degrees of freedom, when the interpolation
constraints are satisfied, we denote v. Thus the interpolant can be
expressed as

pv(s) =
X
i∈In

ci(v)Bi,n(s), s ∈Ω. (5.1)
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The combination of an algebraic hypersurface q(x) = 0 (of total degree
m) and pv(s) can, because we only address nonrational approximation, have
a simpler expression than in (4.3). Adapted to the notation of this section
we get the description

q(pv(s)) = (Dvb)
T B(s), (5.2)

where B(s) contains all PosProd basis functions resulting from making the
m-th power of the PosProd basis described by Bi,n(s), i ∈ In. We have
introduced Dv to express the dependence of the matrix D on the remaining
degrees of freedom in the interpolant. The number of basis function in B(s)
is as before denoted Ñmn.
Since we know the algebraic hypersurface(s), the coefficient vector b is

constant. However, we want to combine Dv and b to d(v) = Dvb. Thus we
reformulate (5.2) to

q(pv(s)) = d(v) ·B(s). (5.3)

We divide the further discussion in two parts addressed in separate sub-
sections.

• In subsection 5.4.1 we address the approximation of a region of a man-
ifold of dimension g ≤ (l − 1) in IRl lying in one algebraic represented
hypersurface q(x) = 0.

The main result is a theorem stating that the convergence rate is the
same as for best approximation based on pv(s) when the approximation
is based on minimizing kd(v)k2 with respect to v.
We concluded with a corollary addressing the case g = l − 1. Thus
addressing the approximation of a (l − 1) dimensional manifold in IRl

lying in an algebraic represented hypersurface. For l = 2 this is the
approximation of algebraic represented curves in IR2. This is further
detailed in Chapter 6. For l = 3 this is the approximation of algebraic
represented surfaces in IR3.

• In subsection 5.4.2 we address the approximation of a part of a manifold
of dimension g < (l − 1) lying in the intersection of (l − g) algebraic
represented hypersurfaces in IRl. Setting g = 1 and l = 3 we have the
approximation of an algebraic curve in IR3.

We have split the discussion into these two parts, because the handling of
a single hypersurface is simpler than the handling the intersection of multiple
hypersurfaces. Thus the discussion in Section 5.4.1 is more easy going than
the discussion in Section 5.4.2.
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5.4.1 Approximating Manifolds Contained in an Alge-
braic Represented Hypersurface

The approximation method to be analyzed is based on finding the value(s)
of v that gives kd(v)k2, defined in (5.3), its minimum value. The proof of
the convergence rate for this method is divided in the following steps:

• First we give lemma 75 stating that when given:

— A manifold f of dimension g in IRl with g < l.

— An algebraic represented hypersurface q(x) = 0 containing f .

— An approximation method pṽ to f with convergence rate O(hr).

Then the combination q(pṽ(s)) has coefficients d(ṽ) = O(hr).

• Then lemma 76 states that coefficients d(v) satisfy

|q(pv(s))| ≤ kd(v)k2 .

This indicates that minimizing kd(v)k2 can give an approximation to
a part of the algebraic hypersurface q(x) = 0.

• Theorem 77 states that, given the above mentioned manifold f and
the existence of the O(hr) approximation, then the minimization of
kd(v)k2 is an O(hr) approximation provided:

— The gradient of q is nonvanishing close to f .

— The gradient of q is not orthogonal to the directions for error
measurement close to f .

The direction for error measurement depends on the actual approxima-
tion pv̂. Thus it is necessary to check if these conditions are satisfied
when an approximation has been found.

• This subsection is concluded by corollary 78 giving additional condi-
tions simplifying the use of the approximation method in certain cases.
These simplifications are:

— g = l − 1, i.e. approximating a part of a hypersurface.
— Limit the variation of ∇q to be less than π

2
close to f .

— Use ∇q(f(s)) as direction for error measurement.
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Now we take the first step in the above mentioned process, and prove
the convergence rate for the coefficient of the combination of the algebraic
represented hypersurface, and the existing approximation method.

Lemma 75 Given a manifold f(t) of dimension g < l in IRl, an algebraic
hypersurface q(x) = 0 containing f and an approximation method pv(s), that
for v = ṽ, has an O(hr) convergence to f(t) for h small enough. Then for h
small enough

kd(ṽ)k∞ = O(hr)

with
k(x1, . . . , xn)k∞ = max

i=1,...,n
|xi| ,

where d(v) is given in (5.3).

Proof. Since we know we have an approximation pṽ with convergence rate
O(hr) when v = ṽ, we can decompose pṽ as follows

pṽ(s) = f(ϕ(s))+η(s)g(s),

where η(s) =O(hr) is the error function, the direction for error measurement
g(s) satisfy kg(s)k2 = 1 and ϕ(s) a reparametrization.. By the assumption in
the lemma, we know that q(f) ≡ 0, and thus Taylor expansion with respect
to η(s) gives (φ(s) replaces η(s) in the error term)

q(pṽ(t)) = q(f(ϕ(s)) + η(s)g(s)) (5.4)

= q(f(ϕ(s))+∇q(f(ϕ(s)) + φ(s)g(s)) · g(s)η(s)
= ∇q(f(ϕ(s)) + φ(s)g(s)) · g(s)η(s)

with |φ(s)| ≤ |η(s)|. This Taylor expansion is the same as the one used on
page 82 to make (4.26). Combining this with (5.3), we get

d(ṽ) ·B(s) = ∇q(f(ϕ(s)) + φ(s)g(s)) · g(s)η(s),

and introducing absolute values we get

|d(ṽ) ·B(s)| ≤ max
s∈Ω

|∇q(f(ϕ(s)) + φ(s)g(s))| |η(s)| = O(hr).

Since the entries in B(s) are linearly independent and independent of h,
entries in d(ṽ) that have a convergence less than O(hr), can not be canceled
by another entry. Thus for |d(ṽ) ·B(s)| to be O(hr) all entries in d(ṽ) have
to be O(hr), giving

kd(ṽ)k∞ = O(hr).
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The step following is to limit the value of |q(pv(t))| by kd(v)k2. Thus
indicating the possibility to approximate a part of q(x) = 0 by minimizing
kd(v)k2.

Lemma 76 Given f , q(x) = 0 and pv(s) as described in lemma 75, then

|q(pv(t))| ≤ kd(v)k2 .

Proof. From (5.3) we have that q(pv(s)) = d(v) ·B(s) with B(s) a PosProd
basis. Now we have that

|q(pv(s))| = |d(v) ·B(s)| ≤ kd(v)k∞ ≤ kd(v)k2 .

Now the foundation for proving the convergence rate is established.

Theorem 77 Given f , q(x) = 0 and pṽ(s) as described in lemma 75 and
pv̂(s) defined by

kd(v̂)k2 = minv kd(v)k2 . (5.5)

If the gradient of q is nonvanishing and not normal to the directions for error
measurement g(s) close to f(t), then for h small enough, the approximation
method pv̂(s) has convergence rate O(hr). The approximation error is limited
by

|η(s)| ≤ min
s ∈ Ω

|ρ| ≤ |η(s)|

kd(v̂)k2
|∇q(f(ϕ(s)) + ρg(s)) · g(s)| . (5.6)

Proof. We can decompose pv̂ in the same way as pṽ was decomposed in
(5.4)

pv̂(s) = f(ϕ(s))+η(s)g(s),

giving
q(pv̂(s)) = ∇q(f(ϕ(s)) + φ(s)g(s)) · g(s) η(s)

with η(s) being the approximation error. Since the gradient of q is nonvan-
ishing and not normal to the direction for error measurement g(s) close to f ,
we have for h small enough a region with ∇q(f(ϕ(s)) + φ(s)g(s)) · g(s) 6=0.
Thus we have using lemma 76 and (5.5) that
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|η(s)| = |q(pv̂(s))|
|∇q(f(ϕ(s)) + φ(s)g(s)) · g(s)|

≤ kd(v̂)k2
min
s ∈ Ω

|ρ| ≤ |η(s)|

|∇q(f(ϕ(s)) + ρg(s)) · g(s)|

≤ kd(ṽ)k2
min
s ∈ Ω

|ρ| ≤ |η(s)|

|∇q(f(ϕ(s)) + ρg(s)) · g(s)|

= O(hr).

We now give a corollary, where the dimension g of the manifold, is set to
(l − 1), thus covering:

• Approximation of algebraic represented curves in IR2.

• Algebraic represented surfaces in IR3.

Corollary 78 Given f , q(x) = 0, pṽ(s) and pv̂(s) as described in theorem
77, and let the dimension of the manifold f be (l − 1). Let the direction
for error measurement at g(s) be parallel to ∇q(f(s)) and let the gradient of
q vary less that π

2
close to f . Then for h small enough pv̂(s) is an O(hr)

approximation to f .

Proof. With the choice of g(s) parallel to the gradient, and the limitation
of the variation of the gradient direction we have that close to f

min |∇q(f(ϕ(s)) + φ(s)g(s) · g(s)| 6= 0,

and theorem 77 gives |η(s)| = O(hr).

5.4.2 Approximation of Manifolds in the Intersection
of Algebraic Represented Hypersurfaces

The approximation problem to be addressed now is closely related to the
problem addressed in the previous subsection. The main difference is that
the manifold f ∈ IRl now lies in the intersection of several hypersurfaces.
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The notation is thus slightly more complicated. The minimization has to be
performed over a sum of the square sums of coefficients.
We still let the dimension of f be denoted g, and denote the manifolds

intersecting along f by

qi(x) = 0, i = 1, . . . , l − g

with g < l − 1. The expression we want to minimize is

l−gX
i=1

kdi(v)k22 (5.7)

with di(v) given by

qi(pv(s)) = di(v) ·B(s), i = 1, . . . , l − g. (5.8)

Here pv(s) is the interpolant given in (5.3).
The main challenge is to find conditions that ensure that the minimiza-

tion of (5.7) results in an approximation with the required convergence rate.
The proof of the convergence rate in theorem 77 did not use the dimension of
the manifold being approximated, thus the results are also valid for this ap-
proximation problem. For manifolds lying in the intersection of two or more
hypersurfaces it is not difficult to construct examples where the direction
of error measurement and the gradient of one of the manifolds, are normal.
Thus the direction of error measurement can not be used with respect to all
algebraic hypersurfaces.
To discuss the convergence rate of this approximation method we use a

similar structure of lemmas and theorems as in the previous section.

• First we give lemma 79, stating that when given:

— A manifold f of dimension g in IRl with g < l − 1.
— Algebraic represented hypersurface qi(x) = 0, i = 1, . . . , g inter-
secting along f .

— An approximation method pṽ to f with convergence rate O(hr).

Then the coefficients di(ṽ) in (5.8) satisfy

gX
i=1

kdi(ṽ)k22 = O(hr).
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• Theorem 80 then following states that the minimization of
Pg

i=1 kdi(v)k
2
2

gives an O(hr) approximation to f provided that:

— The gradient of one of the hypersurfaces qi(x) = 0, , i = 1, . . . , g
is nonvanishing and not orthogonal to the direction for error mea-
surement close to f .

The direction for error measurement is dependent on the actual ap-
proximation pv̂. Thus, as in the case of one algebraic hypersurface,
it is necessary to check the direction for error measurement after an
approximation has been found.

By adding the two following requirements to the hypersurfaces, we get
a simpler approximation problem to implement:

— The gradient of qi, i = 1, . . . , g is nonvanishing close to f and
varying less than π

2
close to f , for i = 1, . . . , g.

— The intersection of the hypersurfaces qi(x) = 0, i = 1, . . . , g is
nonsingular along f .

Lemma 79 Given a manifold f(t) of dimension g < l − 1 in IRl, and a
set of algebraic hypersurfaces qi(x) = 0, i = 1, . . . , l − g intersecting along
f . In addition assume that there exists an approximation method pv(s) that
for v = ṽ has an O(hr) convergence to f(t) for h small enough. Then for h
small enough we have

max kdi(ṽ)k∞ = O(hr), i = 1, . . . , l − g,

where di(ṽ) is given in (5.8).

Proof. Since pṽ(s) is an approximation to the intersection of all the hyper-
surfaces and have convergence rate O(hr), pṽ(s) it is also and approximation
to each of the hypersurfaces. Thus lemma 75 can be used on each hypersur-
face thus proving this lemma.
Now we connect the convergence of the coefficients of the existing approx-

imation method to coefficients of the method based on the minimum square
sum.

Theorem 80 Given f , q and pṽ(s) as described in lemma 79. Let pv̂(s) be
defined by

l−gX
i=1

kdi(v̂)k22 ≤ minv

l−gX
i=1

kdi(v)k22 .
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If for at least one j ∈ {1, . . . , g} the gradient of qj is nonvanishing and not
normal to the directions for error measurement g(t) close to f(t), then for
h small enough the approximation method pv̂(s) has convergence rate O(hr).
The approximation error is limited by¯̄

ηj(s)
¯̄
≤ kdj(v̂)k2

min
s ∈ Ω

|ρ| ≤
¯̄
ηj(s)

¯̄ |∇qj(f(ϕ(s)) + ρg(s)) · g(s)| .

Proof. Since the gradient of qj is nonvanishing and not normal to the
directions for error measurement g(t) close to f(t), the condition of theorem
77 are satisfied giving¯̄

ηj(s)
¯̄
≤ kdj(v̂)k2

min
s∈Ω,|ρ|≤|ηj(s)|

|∇qj(f(ϕ(s)) + ρg(s)) · g(s)| .

Further the definition of v̂ and lemma 79 give

kdj(v̂)k2 ≤

vuut l−gX
i=1

kdi(v̂)k22 ≤

vuut l−gX
i=1

kdi(ṽ)k22 = O(hr).

Thus the theorem is proved.

Remark 23 This theorem is difficult to put in practice, because the hyper-
surfaces intersecting along f can have a singular intersection. Another prob-
lem is that the gradients of the hypersurfaces can vanish, or vary more than
desirable. Thus to get a method that is simpler to implement, we add the
following conditions on hypersurfaces intersecting along f :

• For all i = 1, . . . , l− g the gradient of qi is required to be nonvanishing
and vary less than π

2
close to f .

• The intersection of the hypersurfaces qi, i = 1, . . . , g is nonsingular
along f .

Example 81 In [Höllig:95] theorem 3 states that: “For a smooth curve with
nonvanishing curvature and torsion the error of the cubic geometric inter-
polant is of order O(h5), where h is the length of the curves segment between
s0 and s1.” Here s0 and s1 are references to the parameter interval on the
curve f to be interpolated. The interpolation constraints imposed are interpo-
lation of position and tangent direction at s0 and s1. Thus the interpolant can
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be described as p(l0,l1)(s). The remaining degrees of freedom are the tangent
lengths at the start and end of the cubic Hermite segment l0 and l1.
Now assume that f lies in the nonsingular intersection of two algebraic

surfaces q1(x) = 0 and q2(x) = 0. Let d1(l0, l1) and d2(l0, l1) be defined as in
(5.8). Then minimizing

kd1(l0, l1)k22 + kd2(l0, l1)k
2
2

gives an O(h5) approximation, provided the resulting direction for error mea-
surement satisfies the conditions in theorem 80.
Thus using the algebraic implicitization with algebraic degree at least 2

in Chapter 4, and the approximation method of this section, enable us to
approximate f with O(h5) convergence, provided f has nonvanishing curvature
and torsion.
If the torsion is vanishing all along the curve, then the curve is planar,

and the results from approximation of curves in IR2 can be used.
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Chapter 6

Cubic Hermite Approximation
of 2D Curves

When approximating the trace of an intersection curve in the parameter
domain of a parametric surface, it is desirable to find an approximation that
use as few polynomial segments as possible. Constraints imposed on such
approximations, are often a given polynomial degree and a maximum error
allowed.
In this chapter we look at cubic Hermite approximation of curves in IR2

with O(h6) convergence. The basis for the methods presented is the theorem
in [de Boor:87-2] where it is stated:
“If f is a smooth curve with nonvanishing curvature and

h := sup |ti+1 − ti|

is sufficiently small, then the positive solution of the system (Q) exist and
the corresponding interpolant(s) pf satisfy dist(f, pf) = O(h6).”
In this theorem the system (Q) describes the interpolation of position,

tangent and curvature from a planar curve f : IR→ IR2 at parameter values
ti and ti+1. The interpolant pf is a cubic Hermite interpolant. Tangent
lengths at the start and end of the Hermite interpolant are controlled to
achieve the required interpolation of curvature.
Based on this we see that, provided the curvature is nonvanishing, and

the approximation is performed by a proper method, we can expect an O(h6)
approximation to the curves in the parameter domain of a parametric surface
by cubic Hermite interpolation.
In Section 5.3 we pointed out that the trace of an intersection curve in the

parameter domain of a surface, is an algebraic curve. Thus, there is in general
no parametric description of such 2D curves. However, we have the algebraic
representation of the curve q(x, y) = 0 either as an exact representation or
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as an approximation. The algebraic description gives the advantage that we
have a description independent of the parametrization of the curve. There
is, however, a difficulty as well. From the algebraic representation and two
points lying on the algebraic curve, we have no guarantee that the points lie
on the same branch of the algebraic curve.
The discussion in this chapter is structured as follows:

• In Section 6.1 we address approximation when both the parametric and
algebraic description of the curve is known. We use the convergence
rate cited above for cubic Hermite interpolation of parametric curves in
IR2 in combination with the algebraic representation of the curve. This
combination enables us to find Taylor expansions of the free tangents
lengths of the cubic Hermite interpolant that give O(h6) convergence.
The expansion is based on the parametrization of the curve to be ap-
proximated.

• In Section 6.2 we address approximation when only the algebraic rep-
resentation of the curve is known. We give a result being a consequence
of theorem 77 on page 121 in Section 5.3. Minimizing the square sum
of the coefficients of the combination q(p(t)) is shown to give an O(h6)
approximation. When using this method, the explicit parametric rep-
resentation of the segment to be approximated, can be unknown.

• Finally in Section 6.3, we combine the approximative implicitization
in Chapter 4 and the above mentioned method for approximation of
algebraic curves, to describe a two step approach to the approximation
of parametric curves in IR2.

6.1 Power Expansion Based on Parametric
Representation

Let an algebraic curve be defined by

q(x, y) = 0, (6.1)

where
q(x, y) =

X
i1+i2+i3=m
i1,i2,i3≥0

ai1,i2,i3x
i1yi2,

and let
f(θ) = (fx(θ), fy(θ)), θ ∈ [−

α

2
,
α

2
] (6.2)
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be an exact parametric representation of a segment with nonvanishing cur-
vature of the algebraic curve. We want to make a cubic Hermite interpolant
p to q(x, y) = 0 satisfying

p(0) = f(−α
2
)

p0(0) k f 0(−α
2
) (6.3)

p(1) = f(
α

2
)

p0(1) k f 0(
α

2
),

where k means parallel to.

Description of interpolant. The Hermite interpolant p(t) is described in
a cubic Bernstein basis

p(t) = (x(t), y(t)) =
3X

i=0

pi

µ
3

i

¶
(1− t)3−iti, (6.4)

where

p0 =

µ
x0
y0

¶
=

µ
fx(−α

2
)

fy(−α
2
)

¶
p1 =

µ
x1
y1

¶
=

µ
fx(−α

2
)

fy(−α
2
)

¶
+ L0(α)

µ
f
0
x(−α

2
)

f
0
y(−α

2
)

¶
p2 =

µ
x2
y2

¶
=

µ
fx(

α
2
)

fy(
α
2
)

¶
− L1(α)

µ
f
0
x(

α
2
)

f
0
y(

α
2
)

¶
p3 =

µ
x3
y3

¶
=

µ
fx(

α
2
)

fy(
α
2
)

¶
.

Since
p(0) = p0 = f(−α

2
)

p0(0) = 3(p1 − p0) = 3L0(α)f
0(−α

2
)

p0(1) = 3(p3 − p2) = 3L1(α)f
0(α
2
)

p(1) = p3 = f(α
2
),

this interpolant satisfies the interpolation requirements in (6.3).

The problem is finding L0(α) and L1(α) such that p approximates f(θ)
with accuracy O(α6). The procedure is divided in the following four steps:
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1. In lemma 82 we establish an equation combining the algebraic curve
q(x) = 0 with the Hermite interpolant p(t). This combination is a
polynomial q(p(t)) of degree 3m, and is represented in a Bernstein
basis.

2. In lemma 83 we show that there exists interpolants p such that the
coefficients of q(p(t)) have O(α6) convergence provided the curvature
of the segment approximated is nonvanishing.

3. Then in lemma 84 we establish a relation between the coefficients with
convergence rate O(α6) and the error of the Hermite interpolant. Here
it is required that the gradient of q is nonvanishing and not orthogo-
nal to the direction for error measurement close to the curve segment
approximated.

4. In theorem 85 we prove that O(α6) approximations can be found by
Taylor expanding the coefficients found in lemma 82 and forcing all
terms of degree less than 6 to be zero.

Lemma 82 Let the algebraic curve q(x) = 0, be defined as in (6.1) and let
the cubic Hermite interpolant p(t) be defined as in (6.4). Then the combina-
tion of q(x, y) and p(t) can be written in the form

q(p(t)) =
3m−2X
k=2

gk(α)

µ
3m

k

¶
(1− t)3m−ktk, (6.5)

for certain coefficients gk(α).

Proof. Since p(t) is a parametric cubic curve and q(x) = 0 is of degree m,
then q(p(t)) is of degree 3m and thus can be described as in (6.5). But with
the index k in the sum going from 0 to 3m. The zero values of gk(α) for
k = 0, 1, 3m− 1, 3m follow from (6.3).

Lemma 83 Let gk(α), k = 2, . . . , 3m − 2 be defined as in lemma 82, let
as in (6.2) f(θ), −α

2
≤ θ ≤ α

2
be a segment with nonvanishing curvature of

the algebraic curve q(x, y) = 0 that we want to approximate. Then for α
sufficiently small there exists p given in (6.4) such that the coefficients gk(α)
satisfy

gk(α) = O(α6), k = 2, . . . , 3m− 2.

Proof. In [de Boor:87-2] it was shown that a cubic Hermite interpolant
p(t) with O(α6) accuracy to a 2D curve segment f(θ) exists when the curve
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segment has nonvanishing curvature. Thus, there exist L1(α) and L2(α)
such that the approximation error ρ(t) = O(α6). Now we decompose p(t) as
follows

p(t) = f(ϕ(t)) + ρ(t)gϕ(t), (6.6)

where ϕ(t), is a reparametrization. and the unit vector gϕ(t) is the direction
for error measurement at f(ϕ(t)). The next step is to Taylor expand the ex-
pression q(p(t)) with respect to ρ(t). (Note that in addition to the functions
ρ(t) and ϕ(t) we also introduce the function φ(t) in the error term of the
Taylor expansion).

q(p(t)) = q(f(ϕ(t)) + ρ(t)gϕ(t))

= q(f(ϕ(t))) +∇q(f(ϕ(t)) + φ(t)gϕ(t)) · gϕ(t)ρ(t) (6.7)

= ∇q(f(ϕ(t)) + φ(t)gϕ(t)) · gϕ(t)ρ(t)

with |φ(t)| ≤ |ρ(t)|, ρ(t)φ(t) ≥ 0. Thus, we can limit |q(p(t))| as follows

|q(p(t))| ≤ k∇q(f(ϕ(t)) + φ(t)gϕ(t))k2 |ρ(t)| .

Since ρ(t) is O(α6) for α small enough and L1(α) and L2(α) chosen properly,
we get

|q(p(t))| ≤ max
|φ(t)|≤|ρ(t)|

k∇q(f(ϕ(t)) + φ(t)nϕ(t))k2 |ρ(t)| = O(α6).

By the definition of gk, k = 2, . . . , 3m − 2 in (6.5) we get gk = O(α6),
k = 2, . . . , 3m− 2.

Lemma 84 Let gk(α), k = 2, . . . , 3m− 2 be defined as in lemma 83, let as
in (6.2) f(θ), −α

2
≤ θ ≤ −α

2
be a segment with nonvanishing curvature of the

algebraic curve q(x, y) = 0 that we want to approximate. If the gradient of
q is nonvanishing and not orthogonal to the direction of error measurement
close to f(θ), θ ∈ [−α

2
, α
2
] then

|ρ(t)| ≤ K k(g2(α), . . . , g3m−2(α))k∞
with K a constant.

Proof. From (6.5) we have that

|q(p(t))| ≤ k(g2(α), . . . , g3m−2(α))k∞ .

In (6.7) we showed that

q(p(t)) = ∇q(f(ϕ(t)) + φ(t)gϕ(t)) · gϕ(t)ρ(t).
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Since for α sufficiently small, min
|σ|≤ρmax

|∇q(f(ϕ(t)) + σgϕ(t)) · gϕ(t)| 6= 0 we

get

|ρ(t)| ≤ |q(p(t))|
min

|σ|≤ρmax
|∇q(f(ϕ(t)) + σgϕ(t)) · gϕ(t)|

≤ k(g2(α), . . . , g3m−2(α))k∞
min

|σ|≤ρmax
|∇q(f(ϕ(t)) + σgϕ(t)) · gϕ(t)|

= K k(g2(α), . . . , g3m−2(α))k∞ .

Theorem 85 Let the algebraic curve be defined as in (6.1) by q(x) = 0, and
let f(ϕ) as in (6.2) be an exact parametric representation of a segment with
nonvanishing curvature of the algebraic curve. Then for α small enough an
O(α6) approximation to the algebraic segment of the type (6.4) can be found
by Taylor expanding

gk(α), k = 2, . . . , 3m− 2
defined in (6.5), and forcing the terms of degree less than 6 to be zero.

Proof. Lemma 83 ensures that gk(α), k = 2, . . . , 3m−2 are O(α6). Thus, a
Taylor expansion around α = 0 gives us conditions for determining the first
terms in the Taylor expansion of respectively L0(α) and L1(α). Lemma 84
connects the O(α6) behavior to the approximation error.
In Chapter 7 this approach is used to describe a family of cubic Hermite

ellipse and circle approximations methods that has O(α6) convergence and
has a specific Taylor expansion of the free tangent lengths L0(α) and L1(α).

6.2 Minimizing the Square Sum of the Coef-
ficients

In the previous section we established how to make an O(α6) cubic Hermite
approximation by expansion of the coefficients of q(p(t)) with respect to α.
We now show that an O(α6) interpolant can be found by minimizing the sum
of the square of the coefficients of q(p(t)). This is a specialization of theorem
77 on page 121 in Section 5.3.
The first step is a lemma limiting the value of |q(p(t))| by an expression

including the square sum of the coefficients q(p(t)). Then a theorem is given,
proving that the convergence rate of this approximation is O(α6).
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Lemma 86 Let q(x) and p(t) be respectively defined as in (6.1) and (6.4)
then

|q(p(t))| ≤

vuut3m−2X
k=2

(gk(α))
2. (6.8)

Proof. From (6.5) we have that

|q(p(t))| ≤ max
0≤k≤3m

|gk(α)| ≤

vuut3m−2X
k=2

(gk(α))
2

proving (6.8).
The theorem following is minimizing (6.8) and proving that the result-

ing Hermite interpolant is O(α6). We now, instead of using gk(α), k =
2, . . . , 3m − 2 to describe the coefficients of the combination q(p(t)), use
gk(L1, L2), k = 2, . . . , 3m− 2. We do this to focus on the tangent lengths in
stead of the parametrization in the theorem to follow.

Theorem 87 Let q(x) and f(θ) be defined respectively as in (6.1) and (6.2)
having nonvanishing curvature. Then the cubic Hermite curve p̂(t) given in
(6.4) with tangent lengths given by L̂1 and L̂2 satisfying

3m−2X
k=2

³
gk(L̂1, L̂2)

´2
= min

L1,L2

3m−2X
k=2

(gk(L1, L2))
2 (6.9)

is an O(α6) approximation to f(ϕ) for α sufficiently small, provided that the
gradient of q is nonvanishing close to f .

Proof. For α small enough we know that an O(α6) Hermite approxima-
tion p̃(t) exists. Let the tangent length in such an O(α6) approximation be
respectively L̃1 and L̃2. By (6.9) we have

3m−2X
k=2

³
gk(L̂1, L̂2)

´2
≤

3m−2X
k=2

³
gk(L̃1, L̃2)

´2
.

We know from lemma 83

¯̄̄
q(p̂L̂1,L̂2(t))

¯̄̄
≤

vuut3m−2X
k=2

³
gk(L̂1, L̂2)

´2
.
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Thus ¯̄̄
q(p̂L̂1,L̂2(t))

¯̄̄
≤

vuut3m−2X
k=2

³
gk(L̃1, L̃2)

´2
= O(α6).

Now we choose the direction for error measurement parallel to the gradient
of q at p̂(t). By lemma 84 on page 131, we have since the gradient of q is
nonvanishing close to f , that p̂(t) is an O(α6) approximation of f(ϕ).

Remark 24 Assuming that p̃(t) is the best O(α6) approximation, by this we
mean the approximation with the smallest maximum error, we see that the co-
efficient of q(p̂(t)) resulting from approximation established in theorem 87 is
limited by the 2-norm of the coefficients of q(p̃(t)) of this best approximation.
Thus, the approximation in theorem 87 is close to the best approximation.

Remark 25 Since the actual value of α is not involved in the minimization
process, the method can be used, if the segment of the algebraic curve has
a parametric description. This parametrization does not have to be explicit.
We only have to be able to assign a unique parameter value to each point of
the segment being approximated. We can find such a parametrization by the
following approach, assuming that the tangent direction of the curve segment
f to be approximated, is varying less than π.

• Let l be a straight line going through the start and the end of the curve
segment f to be approximated.

• Let q lie on the side of l opposite to f .

• Let q lie between the lines that are tangential to respectively the start
and end of f .

By choosing q according to the constraints above, straight lines through q
only intersect f once, because we assume that f has nonvanishing curvature.
The parametrization of a point on f can be chosen to be the rotation angle of
the straight line through q, intersecting f in the given point.
The consequence of this observation is that we can use the algorithm from

theorem 87 to make O(α6) approximations of segments of algebraic curves.

6.3 Cubic Hermite Approximation of Para-
metric Curves

In corollary 49 on page 78 we established conditions for an O(h
(m+1)(m+2)

2
−1)

approximation of an algebraic curve q(x, y) = 0 to a parametric curve seg-
ment g(s), s ∈ [0, 1]. Then in theorem 85 on page 132 and remark 25 above
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we established conditions for a O(h6) cubic Hermite approximation p(t) to
an algebraic curve q(x, y) = 0. Combining these results we obtain an al-
gorithm for making an O(h6) cubic Hermite approximation of a segment of
parametric curve, by introducing an intermediate algebraic approximation of
degree m ≥ 3.
Let r(α), α ∈ [0, 1] be the exact representation of the segment of the alge-

braic curve used in the approximation. We then get the following separation
of the errors of the two approximation stages

kp(t)− g(φ1(t))k2 ≤ kp(t)− r(φ2(t)) + r(φ2(t))− g(φ1(t))k2
≤ kp(t)− r(φ2(t))k2 + kr(φ2(t))− g(φ1(t))k2
≤ O(h

(m+1)(m+2)
2

−1) +O(h6)

with φ2(t) and φ1(t) being reparametrization.
For m = 1, 2, . . . we get the following total convergence rates

Algebraic degree 1 2 ≥3
Convergence rate O(h2) O(h5) O(h6)

provided that conditions used for establishing these convergence rates in
corollary 49 and theorem 85 are fulfilled. These conditions are:

• The gradient of q close to g(s) must be nonvanishing.

• The curvature of the segment of the intermediate algebraic curve used
must be nonvanishing.

Example 88 In the first version of SINTEF Spline Library SISL tangent
lengths for a Hermite segment approximating an intersection curve was es-
timated by using position, tangent and radius of curvature at both start and
end point.
The tangent length L0 for the start point was calculated by assuming that

the curve was a circle with radius rstart and opening angle α using the tangent
length estimate given in example 96. Similarly the tangent length for the end
L1 was estimated based on rend and α. The opening angle α was set to the
angle between the start and end tangent.
This method is in the general case at most an O(h5) approximation. How-

ever, if the curve happened to be a circle segment the approximation rate is
O(h6). Some informal measurements that were performed on the convergence
rate, showed that in many practical cases from 3D CAD an O(h5) behavior
was observed. An unexpected consequence of the higher approximation rate
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for circles was a bug report from a user stating that too few Hermite seg-
ments were produced when marching intersection curves that were true circle
segments.
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Chapter 7

Ellipse and Circle
Approximation

In Chapter 6 we looked at cubic Hermite approximation of curves in IR2 and
cited [de Boor:87-2] to establish O(h6) convergence for cubic Hermite inter-
polation of curves with nonvanishing curvature. Ellipses are curves satisfying
this curvature requirement. The paper introduced the first O(h6) circle in-
terpolants. Then the paper [Dokken:90] introduced possibilities to model the
shape of the error function by combining:

• The algebraic description of the circle being approximated.

• The parametric description of the cubic Hermite interpolant.

In the papers [Floater:95-1], [Floater:96] and [Floater:97] the following
aspects of conic approximation are respectively addressed:

• High order approximation by quadratic splines.

• Cubic approximation schemes for conic sections.

• O(h2n) Hermite approximation for conic sections.

In this chapter we use the idea from [Dokken:90] and combine it with the
results of theorem 85 in Chapter 6 applied to ellipse approximation. Theorem
85 showed how we can utilize the algebraic and parametric description of a
curve segment being approximated to control the cubic Hermite interpolation
in such a way that O(h6) convergence is achieved.
The first step in the analyzes of ellipse approximation is to give the de-

scription of the ellipse segment and the cubic Hermite interpolant. When
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discussing circle approximation the natural circle to use is the unit circle.
The area of a unit circle is π; the area of an ellipse is πab where a and b are
the half axis. By choosing the half axis to be b and 1

b
, we have an ellipse with

the area of a unit circle. By scaling, translation and rotation any ellipses can
be derived from this “unit ellipse”. In addition for b ≡ 1 the “unit ellipse” is
the unit circle.

The Ellipse Segment. The ellipse segment is described by

c(θ) = (b cos θ,
1

b
sin θ), τ ≤ θ ≤ τ + α (7.1)

with b > 0. The algebraic description of the ellipse segment c(θ) is
q(x, y) = 0 with

q(x, y) =
³x
b

´2
+ (b y)2 − 1. (7.2)

Hermite Interpolant. The Hermite interpolant p(t) is required to match
position and tangent of (7.1) for θ = τ and θ = τ +α. The description
of p(t) in a cubic Bernstein basis is:

p(t) = (x(t), y(t)) =
3X

i=0

pi

µ
3

i

¶
(1− t)3−iti, (7.3)

where

p0 = c(τ) =

µ
b cos (τ)
1
b
sin τ

¶
p1 = c(τ) + L0(α)c

0(τ)

=

µ
b cos (τ)
1
b
sin (τ)

¶
+ L0(α)

µ
−b sin (τ)
1
b
cos τ

¶
p2 = c(τ + α)− L1(α)c

0(τ + α)

=

µ
b cos (τ + α)
1
b
sin (τ + α)

¶
− L1(α)

µ
−b sin (τ + α)
1
b
cos (τ + α)

¶
p3 = c(τ + α) =

µ
b cos (τ + α)
1
b
sin (τ + α)

¶
.

The only unknown quantities in p(t) are the tangent length descriptions
L0(α) and L1(α). The problem is thus to control L0(α) and L1(α) to get a
best possible approximation.
The parametric and algebraic description of the ellipse segment satisfy

the conditions of theorem 85. Thus, we can power expand the coefficient of
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q(p(t)) with respect to α. We know that the terms of degree lower than 6
vanish for proper choices of L0(α) and L1(α).
We structure this chapter as follows.

• In Section 7.1 we give a theorem that states when L0(α) and L1(α)
satisfy

L0(α) =
α

3
+

¡
1
24
+ c1

¢
α3

6
+

c2α
4

24
+O(α5) (7.4)

L1(α) =
α

3
+

¡
1
24
− c1

¢
α3

6
− c2α

4

24
+O(α5), (7.5)

then the Hermite ellipse interpolant is O(α6). The theorem also gives
two alternative Taylor expansions with O(α6) convergence. However,
these have a much larger approximation error.

For circle approximation it is natural to require L0(α) ≡ L1(α) to get
a symmetric approximation. The section is concluded with a corollary
stating that forcing L0(α) ≡ L1(α) results in

L0(α) = L1(α) =
α

3
+

α3

144
+O(α5). (7.6)

• In Section 7.2 we give examples of circle approximation methods satis-
fying (7.6).

• Examples of methods for ellipse approximation that satisfies (7.4) and
(7.5) are then given in Section 7.3. The constants c1 and c2 are here
used to model the approximation to give a desired shape. Also higher
degree terms are added to (7.4) and (7.5) to give better shape control.

• We conclude the chapter in Section 7.4 by three O(h8) circle approxi-
mations based on a fourth degree interpolant that match position and
tangent direction at the segment ends.

7.1 Taylor Expansion of Tangent Lengths

We address in this section conditions on the Taylor expansion of the tangent
length functions to achieve O(α6) convergence. The discussion is structured
as follows:

• The first step is a lemma that express q(p(t)) in a 6-th degree Bernstein
basis.
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• Then the main result of this subsection is stated in theorem 90. Here
three different pairs of Taylor expansions of L0(α) and L1(α) are given
that give an O(α6) convergence of the ellipse approximation.

• Then we discuss the error of these and conclude that the one referenced
in (7.4) and (7.5) has the smallest error functions.

• In circle approximation, symmetry in the approximation is often re-
quired, thus demanding that L0(α) ≡ L1(α). In corollary 91 we look
at this problem and deduct the tangent length function in (7.6).

To simplify the theorem to follow, we give the following lemma expressing
q(p(t)) in a 6-th degree Bernstein basis.

Lemma 89 Let the Hermite interpolant p(t) to the ellipse segment be de-
scribed as in (7.3) and let the algebraic description of the ellipse be q(x) = 0
as describe in (7.2) then

q(p(t)) = 15a(α)(1− t)4t2 + 20b(α)(1− t)3t3 + 15c(α)(1− t)2t4, (7.7)

where

a(α) =
3L0(α)

2 + 2L1(α) sinα− 2(1− cosα)
5

b(α) =
−9L1(α)L0(α) cosα+ 9(L1(α) + L0(α)) sinα− 10(1− cosα)

10

c(α) =
3L1(α)

2 + 2L0(α) sinα− 2(1− cosα)
5

.

(7.8)

Proof. Can be verified by expanding the expressions.
The theorem following shows that three different pairs of Taylor expan-

sion exists for L0(α) and L1(α) that give an O(α6) convergence of the error
function.

Theorem 90 Let the cubic Hermite interpolant p(t) and the ellipse segment
c(α) be defined as in lemma 89. If the tangent length functions L0(α) and
L1(α) satisfy either

L0(α) =
α

3
+

¡
1
24
+ c1

¢
α3

6
+

c2α
4

24
+O(α5)

L1(α) =
α

3
+

¡
1
24
− c1

¢
α3

6
− c2α

4

24
+O(α5),
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or

L0(α) =
α

3
+

1

2
√
3
α2 +

¡
−1
3
+ c1

¢
α3

6
+

¡
−
√
3c1 + c2

¢
α4

24
+O(α5)

L1(α) =
α

3
− 1

2
√
3
α2 +

¡
−1
3
− c1

¢
α3

6
+

¡
−
√
3c1 − c2

¢
α4

24
+O(α5),

or

L0(α) =
α

3
− 1

2
√
3
α2 +

¡
−1
3
+ c1

¢
α3

6
+

¡√
3c1 + c2

¢
α4

24
+O(α5)

L1(α) =
α

3
+

1

2
√
3
α2 +

¡
−1
3
− c1

¢
α3

6
+

¡√
3c1 − c2

¢
α4

24
+O(α5),

then the approximation p(t) to the ellipse segment is O(α6).
The corresponding Taylor expansions of a(α), b(α) and c(α) defined in

(7.8) are respectively

a(α) =
³

7
57600

+ 1
80
c1 +

1
60
c21 +

1
300

³
L
(5)
0 + L

(5)
1

´´
α6

+
³

1
320

c2 +
1
120

c2c1 +
1

1800

³
L
(6)
0 + L

(6)
1

´´
α7 +O (α8)

b(α) =
³
− 23
38400

+ 1
40
c21 +

1
200

³
L
(5)
0 + L

(5)
1

´´
α6

+
³
1
80
c2c1 +

1
1200

³
L
(6)
0 + L

(6)
1

´´
α7 +O (α8)

c(α) =
³

7
57600

− 1
80
c1 +

1
60
c21 +

1
300

³
L
(5)
0 + L

(5)
1

´´
α6

+
³
− 1
320

c2 +
1
120

c2c1 +
1

1800

³
L
(6)
0 + L

(6)
1

´´
α7 +O (α8) ,

and

a(α) =
³

11
1800
− 1

40
c1 +

√
3

120
c2 +

1
60
c21 +

1
300

³
L
(5)
0 + L

(5)
1

´´
α6

+
³√

3
180

c1 −
√
3

120
c21 +

1
120

c2c1 −
√
3

1800
+

√
3

600
L
(5)
0 + 1

1800

³
L
(6)
0 + L

(6)
1

´´
α7 +O (α8)

b(α) =
³
− 49
1200

+
√
3
80
c2 +

1
40
c21 +

1
200

³
L
(5)
0 + L

(5)
1

´´
α6

+
³
−7

√
3

240
c1 +

1
80
c2c1 +

√
3

800

³
L
(5)
0 − L
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and

a(α) =
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√
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Proof. Since we already know than an O(α6) approximation exists, we just
have to find conditions for L0(α) and L1(α) that ensure that the terms of
degree 5 or lower in the Taylor expansion of a(α), b(α) and c(α) vanish. The
proof has the following steps:

• First we make the Taylor expansion with seven terms of a(α), b(α) and
c(α). Here we notice that the only unknown expressions are derivatives
of L0(α) and L1(α) up to order 5 for α = 0.

• Then we successively look at conditions that make the terms of degree
five or lower in the Taylor expansion a(α), b(α) and c(α) vanish.

Taylor expanding respectively a(α), b(α) and c(α) to 7 terms we get:
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and
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and
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Now we successively look at terms in the expansions of higher and higher
degree to establish conditions that make the terms of degree five or lower
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vanish. First we look at the coefficients of the terms of degree zeroµ
3

5
L0 (0)

2

¶
= 0µ

− 9
10

L1 (0)L0 (0)

¶
= 0µ

3

5
L1 (0)

2

¶
= 0.

We see that only assigning L0 (0) = 0 and L1 (0) = 0 set the coefficients of
the zero degree terms to 0. Remember these values for use later in the proof.
The first degree terms are all zero by these assignments. The second degree
terms are reduced to µ

3

5
L00 (0)

2 − 1
5
+
2

5
L01 (0)

¶
= 0µ

− 9
10

L01 (0)L
0
0 (0)−

1

2
+
9

10
L00 (0) +
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5
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¶
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These equations only vanish when L00(0) = L01(0) =
1
3
. Now the third degree

terms are reduced to the condition

L000 (0) + L001 (0) = 0.

Further all the fourth degree terms are reduced to the condition

L0000 (0) + L0001 (0) =
1

12
− 9
4
(L000 (0))

2
,

and the fifth degree terms reduce to

6L000 (0)L
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0 (0) + L

(4)
0 (0) + L

(4)
1 (0) + 2L000 (0) = 0

3L000 (0) (L
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0 (0) = 0

−6L000 (0)L0001 (0) + L
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1 (0) + L
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These three equations are linearly dependent, and we can substract the last
from the first to get:

L000 (0)

µ
L0000 (0) + L0001 (0) +

2

3

¶
= 0.
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Combining with the condition from the fourth degree terms, we get

L000 (0)

µ
1

12
− 9
4
(L000 (0))

2
+
2

3

¶
= 0,

resulting in

L000 (0) = 0 or L
00
0 (0) = ±

1√
3
.

Above in the proof we have already found that

L0(0) = L1(0) = 0

L00(0) = L01(0) =
1

3
.

Analyzing the above three alternatives for L000 (0) , and applying these on the
forth and fifth degree terms, we get remembering that L000(0) + L001(0) = 0 :

1. First alternative L000 (0) = L001 (0) = 0, giving the following requirements
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These are satisfied by
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2. Second alternative L000 (0) =
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3
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, giving the following

requirements
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3. Third alternative L000 (0) = − 1√
3
and L001 (0) =

1√
3
, giving the following

requirements
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These are satisfied by
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Higher order terms in L0(α) and L1(α) do not influence the annihilation
of the low order terms, thus we can add a O(α5) term to the expansion of
L0(α) and L1(α).
The Taylor expansions of a(α), b(α) and c(α) are now straight forward

by using the proper pairs of Taylor expansion of L0(α) and L1(α).
Looking at the sixth order terms of the alternative Taylor expansions

of a(α), b(α) and c(α), we see that the constants in the first expansion
are much smaller than in the other two, thus we prefer to concentrate the
examples in the next section on the first alternative. Tests have shown a
much smaller error function when using the first alternative compared to
the others. For circle approximation the first alternative is the one giving
the best approximation. In addition symmetry of tangent lengths for circle
approximation is impossible with the second and third alternative.
In circle approximation it is natural to require symmetry of tangent length

and thus requiring L0(α) ≡ L1(α). The following corollary presents the
consequence of this simplification.

Corollary 91 Let the approximation problem be defined as in theorem 90
and in addition impose that

L0(α) ≡ L1(α) ≡ L(α).

Then to achieve O(h6) convergence L(α) has to satisfy

L(α) =
α

3
+

α3

144
+O(α5). (7.9)

In addition a(α) ≡ c(α). The Taylor expansion of a(α) and b(α) satisfy

a(α) = ( 7
57600

+ 1
150

L(5)(0))α6 +O(α7) (7.10)

b(α) = (− 103
38400

+ 29
2400

L(5)(0))α6 +O(α7). (7.11)
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Circle approximation Example Inside error Outside error
Simplest 94 −6.6× 10−5 3.4× 10−6
One sided outside 95 0 1.9× 10−5
Equioccilating 96 −1.4× 10−5 1.4× 10−5
Flat 98 0 6.2× 10−5
Zero integral 100 −1.9× 10−5, 1.2× 10−5
Minimum square sum 101 0 2.4× 10−5

Table 7.1: The table shows a summary of different cubic Hermit circle approx-
imations and how the error behaves. The approximation with least variation
of error is the “one sided outside” that has an error variation of 1.9× 10−5,
the “equioccilating” has a variation in error 2.8× 10−5. The circle segment
approximateded is a segment with opening angle 1 of a unit circle.

Proof. To get the required symmetry c1 = c2 = 0. This gives the Taylor
expansion of the tangent length function in (7.9). The Taylor expansion of
a(α) and b(α) is now straight forward.

7.2 Some Cubic Hermite Circle Interpolants

The background for the work on circle approximation methods described in
this section was accuracy requirements to the spline library SISL developed
at SINTEF in Oslo in 1988-1989. The basic idea behind these methods is
to model the shape of the error function of the cubic Hermit interpolants,
and is described in [Dokken:90]. In [Moerken:91-2] Quadratic Interpolation
of circles is addressed, while in [Lyche:94] these ideas are extended to odd
degrees n and an error function e(t) = O(t2n). The goal in this section
is to combine a required geometric shape in the error function and a high
convergence rate for cubic Hermite interpolants.
In corollary 91 we addressed conditions to be imposed on the Taylor

expansion of the tangent length at the start and end of a cubic Hermit circle
interpolant to achieve O(α6) convergence. This is the basis for a family of
O(α6) circle interpolants. We illustrate the flexibility of this family by the
following examples:

• The near equioscillating Hermite circle approximation with two internal
zeroes.

• The one sided circle approximation with a double zero in the middle.
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• The circle approximation with simplest Taylor expansion of the tangent
length function.

• An O(α6) circle approximation with no internal zeroes.

• A circle approximation with zero integral of q(p(t)).

• A circle approximation with a minimum of the square of the Bezier
coefficients of q(p(t)). Also in this there are no internal zeroes.

For a brief overview of the methods table 7.1 summarizes the error vari-
ation of the methods. As usual with approximation methods, which method
is the best depends upon the actual use of the approximation.
The Hermite interpolant we use, is described in (7.3). Since we have

L1(α) ≡ L2(α) ≡ L(α) as in corollary 91, we here get a somewhat simpler
description of the Hermite interpolant than on page 138.

p(t) = (x(t), y(t)) =
3X

i=0

pi

µ
3

i

¶
(1− t)3−iti, (7.12)

where

p0 = c(0) =

µ
1
0

¶
p1 = c(0) + L(α)c0(0) =

µ
1
0

¶
+ L(α)

µ
0
1

¶
p2 = c(α)− L(α)c0(α) =

µ
cosα
sinα

¶
− L(α)

µ
− sinα
cosα

¶
p3 = c(α) =

µ
cosα
sinα

¶
.

In this case the expression q(p(t)) reduces to

q(p(t)) = 15a(α)(1− t)4t2 + 20b(α)(1− t)3t3 + 15a(α)(1− t)2t4,

where

a(α) = 1
5
(3L(α)2 + 2L(α) sinα− 2(1− cosα)) (7.13)

b(α) = 1
10
(−9L(α)2 cosα+ 18L(α) sinα− 10(1− cosα)). (7.14)

These values for a(α) and b(α) can also be found in [Dokken:90]. For the
approximation to be O(α6), corollary 91 stated that

L(α) =
α

3
+

α3

144
+O(α5).
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One requirement that has to be satisfied for the interpolant to be O(α6),
was that the gradient of the algebraic curve must be nonvanishing close to
the curve being approximated. For a circle the gradient is only vanishing at
the circle center. Thus, imposing that 0 < α < π, and only allow positive
values for L(α), keeps the approximation away from the origin.
The algebraic description of the unit circle, that is used in this section,

is q(x, y) = 0 with
q(x, y) = x2 + y2 − 1. (7.15)

Before giving examples, we give a theorem that connects the behavior of
q(p(t)) to the approximation error. The theorem also shows that the maxi-
mum value of |q(p(t))|

2
is a good error estimate for the circle approximations

to be used in the examples. When we say error function in the example in
this section, and in Section 7.4, we use this error estimate.

Theorem 92 Let the Hermite interpolant p(t) to the circle segment be de-
scribed as in (7.12) and let the algebraic description of the unit circle q(x) = 0
be described as in (7.15). Provided that the error

ρ(t) =
p
x(t)2 + y(t)2 − 1

in the circle approximation satisfy

ρmax = max
0≤t≤1

|ρ(t)| < 1, (7.16)

then

|ρ(t)| ≤ |q(p(t))|
2(1− ρmax)

. (7.17)

Proof. The Hermite interpolant p(t) can be decomposed such that p(t) =
p0(t) + ρ(t)n0(t), where q(p0(t)) = 0 is an exact representation of the circle
segment and n0(t) is the unit normal of the circle segment at p0(t). Using
this decomposition and Taylor expanding to two terms with respect to ρ(t)
we get

q(p(t)) = q(p0(t) + ρ(t)n0(t))

= q(p0(t)) +∇q(p0(t) + θ(t)n0(t)) · n0(t))ρ(t)
= ∇q(p0(t) + θ(t)n0(t)) · n0(t))ρ(t).

Here θ(t)ρ(t) ≥ 0, |θ(t)| ≤ |ρ(t)|. We have that ∇q(p0(t) + θ(t)n0(t)) is
parallel to n0(t), resulting in

|q(p(t))| = k∇q(p0(t) + θ(t)n0(t))k2 |ρ(t)| .
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t 10.80.60.40.20

0.0001

0

-0.0001

Figure 7.1: Error of the simplest circle approximation with convergence rate
O(α6). The circle segment approximated has opening angle α = 1 and unit
radius.

Now assuming that ∇q(p0(t) + θ(t)n0(t)) 6= 0, we get

|ρ(t)| = |q(p(t))|
k∇q(p0(t) + θ(t)n0(t))k2

. (7.18)

Going back to the definition of q(x) = 0 in (7.15), we get

∇q (p0(t) + θ(t)n0(t)) = 2n0(t)(1 + θ(t)).

Thus
k∇ (p0(t) + θ(t)n0(t))k2 = 2 |1 + θ(t)| .

Since |θ(t)| ≤ |ρ(t)| ≤ ρmax < 1, we get

k∇ (p0(t) + θ(t)n0(t))k2 > 2(1− ρmax).

Inserting this into (7.18) we get (7.17).

Corollary 93 All circle approximations methods defined as in (7.12) satis-
fying conditions (7.9) and (7.16) are O(α6).

Proof. Corollary 91 establish O(α6), while theorem 92 connects the conver-
gence rate to the error.
The first example is the circle approximation with the simplest Taylor

expansion of the tangent length function L(α).
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t 10.80.60.40.2

0.0001

0

-0.0001

Figure 7.2: The error for the outside one sided approximation for opening
angle α = 1 and unit radius.

Example 94 (Simplest Circle Approximation.) We chose

L(α) =
1

3
α+

1

144
α3.

By corollary 91 this is a circle approximation with an O(α6) convergence
rate. The values of a(α) and b(α) and their corresponding Taylor expansions
to eleven terms are:

a(α) = 1
15
α2 + 1

360
α4 + 1

34560
α6 + 2

15
(sinα)α+ 1

360
(sinα)α3 − 2

5
+ 2

5
cosα

= 7
57600

α6 + 1
151200

α8 +O(α10)

b(α) = − 1
10
(cosα)α2 − 1

240
(cosα)α4 − 1

23040
(cosα)α6

+3
5
(sinα)α+ 1

80
(sinα)α3 − 1 + cosα

= − 23
38400

α6 − 1
322560

α8 +O (α10) .

Note that the coefficients are O(α6). The error function for α = 1 is plotted
in figure 7.1. Note that L(α) > 0 for α > 0.

Now two different circle approximation methods from [Dokken:90] are
addressed.

Example 95 (One Sided Outside Circle Approximation.) In the ar-
ticle [Dokken:90] an one sided outside interpolant was established by choosing
L(α) = 4

3
tan 1

4
α. The values and Taylor expansion of respectively L(α), a(α)
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t 10.80.60.40.20

0.0001

0

-0.0001

Figure 7.3: The the error of the near equioscillating approximant for opening
angle α = 1 and unit radius.

and b(α) are:

L(α) = 4
3
tan 1

4
α

= 1
3
α+ 1

144
α3 + 1

5760
α5 +O (α7)

a(α) = 16
15
tan2 1

4
α+ 8

15
tan 1

4
α sinα− 2

5
+ 2

5
cosα

= 1
3840

α6 +O (α10)

b(α) = −3
2
a(α)

= − 1
2560

α6 +O (α10) .

The error of the one sided circle interpolant is shown in figure 7.2 for α = 1.
Note that L(α) > 0 for 0 < α < 2π. Note that all the terms of degree 7, 8
and 9 in the Taylor expansion of a(α) and b(α) vanish.

Example 96 (Equioscillating Circle Approximation.) An interpolant with
three equioscillations of q(p(t)) was established in [Dokken:90] by choosing

L(α) =
(9−2K) sinα−

√
((9−2K) sinα)2−6(2K+3cosα)(5−2K)(1−cosα)

3(2K+3 cosα)

K = 1
2
− 3
p
3− 2

√
2− 3

p
3 + 2

√
2.

Taylor expanding in Maple, we get

L(α) = 1
3
α+ 1

144
α3 + 1.39140882187655× 10−4α5 +O (α7)

a(α) = 2.32840483527903× 10−4α6 +O (α8)

b(α) = −4.3198927470815× 10−4α6 +O (α8) .
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The error of the near equioscillating circle interpolant is shown in figure
7.3 for opening angle α = 1 and radius 1. Also in this case L(α) > 0 for
0 < α < 2π.

The next circle approximation we look at is one that satisfies

dq(p(t))

dt

¯̄̄̄
t= 1

2

=
d2q(p(t))

dt2

¯̄̄̄
t= 1

2

=
d3q(p(t))

dt3

¯̄̄̄
t=1

2

= 0.

We see that within the interval [0, 1] this approximation method has only
four zeroes when counting multiplicity although the convergence is O(α6).
Thus, we disconnect the convergence rate from the number of zeroes in the
error function in the approximation interval. Before the example we give
a lemma proving that the function L(α) resulting from these requirements,
gives a circle approximation with O(α6) convergence.

Lemma 97 Let 0 ≤ α < arccos 1
3
, and the tangent length of the approxima-

tion be determined by

L(α) = 1
3
α+ 1

144
α3 + 1

144

³
48α+α3−144(cosα)α−3(cosα)α3

(3(cosα)−1)

+
480 sinα−96

√
(−36 cosα+2cos2 α+34)
(3(cosα)−1)

¶
= 1

3
α+ 1

144
α3 + 31

92160
α5 + 1069

123863040
α7 +O (α9) ,

then we have that

dq(p(t))

dt

¯̄̄̄
t= 1

2

=
d2q(p(t))

dt2

¯̄̄̄
t= 1

2

=
d3q(p(t))

dt3

¯̄̄̄
t=1

2

= 0,

and the choice of L(α) gives an O(α6) approximation to the circle.

Proof. Since q(p(t)) is symmetric around t = 1
2
the first and third derivative

have to be zero for t = 1
2
. Now by choosing

L(α) =
1

3
α+

1

144
α3 +

C

5760
α5, (7.19)

then

d2q(p(t))

dt2

¯̄̄̄
t= 1

2

= 9− 9 cosα+ 27
4

µ
1

3
α+

1

144
α3 +

1

5760
Cα5

¶2
cosα

−9
4

µ
1

3
α+

1

144
α3 +

1

5760
Cα5

¶2
+15

µ
1

3
α+

1

144
α3 +

1

5760
Cα5

¶
sinα.
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The requirement that
d2q(p(t))

dt2

¯̄̄̄
t= 1

2

= 0

gives a second degree equation in the unknown C. The solutions of this are

C1 = 40
48α+α3−144(cosα)α−3(cosα)α3+480 sinα−96

√
(−36 cosα+2cos2 α+34)

(3(cosα)−1)α5

C2 = 40
48α+α3−144(cosα)α−3(cosα)α3+480 sinα+96

√
(−36 cosα+2cos2 α+34)

(3(cosα)−1)α5 .

Inserting C1 into (7.19) and performing Taylor expansion, we get

L1(α) =
1

3
α+

1

144
α3

+
1

144

48α+α3−144(cosα)α−3(cosα)α3+480 sinα−96
√
(−36 cosα+2 cos2 α+34)

(3(cosα)−1)

=
1

3
α+

1

144
α3 +

31

92160
α5 +

1069

123863040
α7 +O

¡
α8
¢
.

Inserting C2(α) into (7.19) and performing Taylor expansion, we get

L2(α) =
1

3
α+

1

144
α3

+
1

144

48α+α3−144(cosα)α−3(cosα)α3+480 sinα+96
√
(−36 cosα+2 cos2 α+34)

(3(cosα)−1)

= 3α+
31

16
α3 +

13081

10240
α5 +

11602939

13762560
α7 +O

¡
α8
¢
.

We see that L2(α) can be discarded since the factor before α is not 13 .

Example 98 (Flat Circle Approximation.) In figure 7.4 we show for
opening angle α = 1 and unit radius the approximation resulting from choos-
ing the tangent length function L(α) as given in lemma 97. The Taylor
expansions of a(α) and b(α) for this choice of L(α) is

a(α) = 1
2560

α6 − 1
163840

α8 +O (α10)

b(α) = − 1
5120

α6 + 1
327680

α8 +O (α10) .

Since a(α) 6= 0, the interpolation is only of multiplicity two at the start and
the end. The plot in figure 7.4 shows that there are no internal zeroes in
[0, 1]. Thus, we have an O(α6) approximation with only four interpolation
conditions in the interval [0, 1].
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t 10.80.60.40.20

0.0001

0

-0.0001

Figure 7.4: Plot of the error function for the circle approximation with first,
second and third derivative at t = 1

2
equal to zero. The example is a segment

of a unit circle with opening angle α = 1.

Note that the error is only a factor 3 greater than the error in the near
equioscillating circle approximation in figure 7.3. Also in this case L(α) > 0
for 0 < α < 2π.
By choosing a factor for the α5 term greater than

1

144

48α+α3−144(cosα)α−3(cosα)α3+480 sinα−96
√
(−36 cosα+2cos2 α+34)

(3(cosα)−1)

we can produce more sharp approximations. However, the sharper the ap-
proximation the larger the errors are.

In the next example we force two extra interpolation points into the Her-
mite approximation by requiring that the integral of q(p(t)) is zero. Also in
this case we get an O(α6) approximation. First we give a lemma establishing
the tangent length function giving a zero integral.

Lemma 99 The cubic Bezier function defined by (7.12) with tangent length
given by

L(α) =
−13

5
sinα+ 1

5

q¡
169 sin2 α+ 216− 378 cosα+ 162 cos2 α

¢
2
¡
6
5
− 9

10
cosα

¢
satisfy

L(α) =
1

3
α+

1

144
α3 +

41

322560
α5 +O

¡
α7
¢
,
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have
1Z
0

q(p(t))dt = 0,

and is an O(α6) circle approximation.

Proof. The first step is to find the integral of q(p(t)). Remember that the
integral from 0 to 1 of a Bernstein basis function of degree n is 1

n+1
. Thus,

1Z
0

q(p(t))dt =
1

7
(2a+ b)

=
1

7

µµ
6

5
− 9

10
cosα

¶
L2(α) +

13

5
L(α) sinα− 9

5
+
9

5
cosα

¶
.

The values of L(α) making the integral zero are

L1(α) =
−13

5
sinα+ 1

5

q¡
169 sin2 α+ 216− 378 cosα+ 162 cos2 α

¢
2
¡
6
5
− 9

10
cosα

¢
L2(α) =

−13
5
sinα− 1

5

q¡
169 sin2 α+ 216− 378 cosα+ 162 cos2 α

¢
2
¡
6
5
− 9

10
cosα

¢ .

The Taylor expansion of these are respectively

L1(α) =
1

3
α+

1

144
α3 +

41

322560
α5 +O

¡
α7
¢

L2(α) = −9α+ 231
16

α3 − 817953
35840

α5 +O
¡
α7
¢
.

The first solution satisfy the requirement for an O(α6) approximation to the
circle segment.

Example 100 (Zero Integral Circle Approximation.) Figure 7.5 shows
a plot of the error for angle α = 1 of a unit circle using the approxima-
tion with zero integral, given in lemma 99. Also in this case L(α) > 0 for
0 < α < 2π.

In theorem 87 it was shown that by minimizing the square sum of the co-
efficient of q(p(t)), the Hermite interpolant would be O(α6). In the following
example we look at this strategy for finding a circle approximation.
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t 10.80.60.40.20

0.0001

0

-0.0001

Figure 7.5: The error of the circle approximation with zero integral of q(p(t))
for opening angle α = 1 and unit radius.

t 10.80.60.40.20

0.0001

0

-0.0001

Figure 7.6: An example of the error function for the circle segment approx-
imation with minimum square sum of the Bezier coefficients of q(p(t)) for
opening angle α = 1 and radius 1.
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Example 101 (Minimum Square Sum Circle Approximation.) We want
for a fixed opening angle α of the circular segment, to find the tangent length
minimizing the expression

p(α) = 2(a(α))2 + (b(α))2.

To do this, we express the tangent length function

L(α) =
1

3
α+

1

144
α3 + c,

and

a(α) = 1
5
(3L(α)2 + 2L(α) sinα− 2(1− cosα))

b(α) = 1
10
(−9L(α)2 cosα+ 18L(α) sinα− 10(1− cosα)).

This minimum has to satisfy

dp(α)

dc
= 0,

which is a third degree equation in the variable c. This equation has one real
solution and two imaginary solutions. Using Maple integrated in Scientific
Word the exact representation of this solution can be found. However, the
expression is so complex that it is not practical to include it in the exam-
ple. However, using Taylor expansion, also in Maple, we get the following
expression

L(α) = 1
3
α+ 1

144
α3 + 1.92759395424836601307189542455× 10−4α5

+1.52919208686334010728474396445× 10−5α7

−3.41585370153491916945982963× 10−7α9 +O(α11).

Note that the condition for O(α6) approximation of the circular segment is
satisfied. Now let α = 1, we then get the following approximative values of

a(1) = 0.00028258357301723175949436545227

b(1) = −0.0003558448258401019809219238703.

This is in accordance with what should be expected, because the signs of a(1)
and b(1) are opposite, and they are of similar absolute value. In the figure
7.6 we have plotted the errors for this circle approximation with opening
angle α = 1 and radius 1. Theorem 87 on page 133 also shows that this
minimization of the square sums is O(α6).
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Ellipse approximation Example Inside error Outside error
Simplest zero integral 102 −7.7× 10−5 8.8× 10−5
Simplest min. square sum 103 −6.7× 10−5 3.4× 10−6
Proj. Equi.circle 96 −2.8× 10−5 2.8× 10−5
Modified min. square sum 104 0 2.6× 10−5
Modified zero integral 105 −2.0× 10−5, 1.4× 10−5

Table 7.2: The table shows a summary of different cubic Hermit ellipse ap-
proximations when approximating the standard ellipse segment of this sec-
tion. The error variation is shown as inside and outside error. The approx-
imation with least variation of error is the modified minimum square sum
approximation, this is better than making a circle of radius 2, approximating
with the equioscilating circle approximation and then projecting on to the
plane of the ellipse.

7.3 Examples of Ellipse Approximations

We now give some examples on how to control the Taylor expansion of the
tangent length functions to model the error in ellipse approximations. These
examples illustrate the possibilities of these approximations, however they
only address a limit number of the family of approximation methods that
can be based on theorem 90. Note that in the examples numeric calculations
have been performed in Maple integrated in Scientific Workplace, thus all
digits displayed might not be significant. Rerunning the example with a
different number of significant digits gives slightly different answers.
To compensate for the variation in the gradient of the algebraic represen-

tation of the ellipse, we introduce weights. Remember the ellipse in (7.2)

q(x, y) =
³x
b

´2
+ (b y)2 − 1 = 0, b 6= 0,

which has the gradient

∇q(x, y) =
µ
2x

b2
, 2b2y

¶
,

and define weights by

wi =
1°°∇q(c(τ + α

6
i))
°°
2

=
1

2
q

1
b2
cos2

¡
τ + α

6
i
¢
+ b2 sin2

¡
τ + α

6
i
¢ , i = 0, . . . , 6

with c(θ) given in (7.1), the parametric description of the ellipse to be ap-
proximated.
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w0 w1 w2 w3 w4 w5 w6
1 .841310 .619477 .474166 .385308 .329369 .293343

Table 7.3: The weights defined for b = 2, τ = 0 and α = 1.

Now let b = 2, τ = 0 and α = 1, then we get the weight values shown in
table 7.3.

Example 102 (Simpelst Zero Integral Ellipse Approximation.) The
sum of the Bernstein coefficients of q(p(t)) was in example 100 shown to be
equal to the integral of q(p(t)). An approximation to the circle was made
by finding a zero of this integral. A weighted analog of this would be to find
the zeroes of a weighted sum of coefficients. This can be done by posing the
conditions

w2a(α) + w3b(α) + w4c(α) = 0. (7.20)

Now search for a solution of type 1 in theorem 90. Here we had

a(α) =
¡

7
57600

+ 1
80
c1 +

1
60
c21
¢
α6 +

¡
1
320

c2 +
1
120

c2c1
¢
α7 +O (α8)

b(α) =
¡
− 23
38400

+ 1
40
c21
¢
α6 +

¡
1
80
c2c1

¢
α7 +O (α8)

c(α) =
¡

7
57600

− 1
80
c1 +

1
60
c21
¢
α6 +

¡
− 1
320

c2 +
1
120

c2c1
¢
α7 +O (α8) .

We observe that by setting c2 = 0 we cancel the degree 7 term. Thus, what
remains is a second degree equation in the variable c1. (7.20) has two solution
c1 = −0.1421624 and c1 = 3.981784 × 10−2. The last of these alternatives
give the plot in figure 7.7 for the approximative error estimate defined by

ρ(t) =
q(p(t))

k∇q(p(t))k2
=
15a(α)(1− t)4t2 + 20b(α)(1− t)3t3 + 15c(α)(1− t)2t4r³

2x(t)
b2

´2
+ (2b2y(t))2

.

The tangent lengths defined by c1 = 3.981784× 10−2 and c2 = 0 are

L0(1) = 0.3469140844

L1(1) = 0.3336414711.

Points from the approximation is plotted if figure 7.8 together with the true
ellipse segment.

To evaluate how good this approximation is, we can make an approxima-
tion by viewing the ellipse as a projection of a circle with radius two. The
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t 10.80.60.40.20

0.0001

0

0.0001

Figure 7.7: The plot of an approximative error function q(p(t))
k∇q(p(t))k2

for the
simplest zero integral approximation of a cubic Bezier curve to an ellipse¡
x
2

¢2
+ (2y)2 − 1 = 0 for the segment

¡
2 cosϕ, 1

2
sinϕ

¢
, 0 ≤ ϕ ≤ 1.

21.81.61.41.21

0.5

0.4

0.3

0.2

0.1

Figure 7.8: The plot of the exact ellipse segment with 25 points sampled
from the approximation.
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error estimate for best approximation given in figure 7.3 for a unit circle and
radius 1 is ±0.000014. The circle, that can be used to make the ellipse in this
example by projection, has radius 2. Thus, we get an error of ±0.000028 for
the projected circle approximation, while the error for the ellipse approxima-
tion in this example is ±0.00008. However, the approximation is better than
the error estimates for the simplest circle approximation given in figure 7.1
that after scaling to radius 2 is between +0.00001 to −0.00012.

Example 103 (Simplest Minimum Square Sum Ellipse Approximation.)
Let as in the previous example the solution alternative chosen be the first, set
c2 = 0 giving

a(α) =
¡

7
57600

+ 1
80
c1 +

1
60
c21
¢
α6

b(α) =
¡
− 23
38400

+ 1
40
c21
¢
α6

c(α) =
¡

7
57600

− 1
80
c1 +

1
60
c21
¢
α6,

and find the minimum of the sum of the square of the weighted coefficients.
Thus, we want to solve

d
¡
w2 (a(α))

2 + w3 (b(α))
2 + w4 (c(α))

2¢
dc1

= 0.

This equation have one real solution that here is approximated by

c1 = −2.427947742× 10−3.

The tangent lengths calculated based on this value for c1 are

L0(1) = 0.3398731198

L1(1) = 0.3406824357.

The plot of the estimated error function is shown in figure 7.9. Note that
this error is between -0.000067 and 0.0000034 which is significantly smaller
than in the previous example.

Let as in the previous examples the solution alternative chosen be the
first, and use the value of c1 = −2.427947742 × 10−3 used in the previous
example. Set as before c2 = 0. Now add O(α5) terms to L0(α) and L1(α)

L0(α) =
α

3
+

¡
1
24
+ c1

¢
α3

6
+
(1.669690586× 10−2 + c3)α

5

120

L1(α) =
α

3
+

¡
1
24
− c1

¢
α3

6
+
(1.669690586× 10−2 − c3)α

5

120
.
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t 10.80.60.40.20

0.0001

0

0.0001

Figure 7.9: The estimated error for the simplest minimum square sum ellipse
approximation. The ellipse segment approximated is the same as in the
previous figure.

If we set c1 = 0 and c3 = 0 in this equation, we end up with the equioscillating
circle approximation from example 96. Now, Taylor expanding the coefficient
of q(p(t)) we get

a(α) =
¡
1.469342676× 10−4 − 3.333333333× 10−3c3

¢
α6

+
¡
−1.313497581× 10−6 + 5.555555556× 10−4c3

¢
α8 +O

¡
α10
¢

b(α) =
¡
−5.153264428× 10−4 − .005c3

¢
α6

+
¡
−3.992837576× 10−6 + 4.904852295× 10−5c3

¢
α8 +O

¡
α10
¢

c(α) =
¡
2.076304753× 10−4 − 3.333333333× 10−3c3

¢
α6

+
¡
6.49202194× 10−6 − 7.349085829× 10−5c3

¢
α8 +O

¡
α10
¢
.

Example 104 (Modified Least Square Sum Ellipse Approximation.)
A first alternative for finding the value of c3 is the value giving the minimum
of the square sum of the weighted coefficients

d
¡
(w2a(α))

2 + (w3b(α))
2 + (w4c(α))

2¢
dc3

= 0.

This is a linear equation with solution approximated to be

c3 = −3.085218937× 10−2.

The resulting estimated error is shown if figure 7.10.
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t 10.80.60.40.20

0.0001

0

0.0001

Figure 7.10: The estimated error function for calculating the constant c3
in the ellipse approximation by the minimum square sum of the weighted
coefficients.

Example 105 (Modified zero integral ellipse approximation.) Another
alternative for finding the value of c3 is as the value giving the integral of the
weighted coefficients the value 0

w2a(α) + w3b(α) + w4c(α) = 0.

This is a linear equation with one solution

c3 = −1.366501622× 10−2.

The resulting estimated error function is shown if figure 7.11.
This finale approximation is smaller than the one we would achieve by

making an approximation of a circle of radius 2 and projecting this onto
an ellipse, as discussed in the end of example 102. This error was ranging
between ±0.00003, while the error in the final example is ranging between
−0.00002 and 0.000015.

7.4 Examples of Degree 4 Circle Approxima-
tion

In [Schaback:92] also the approximation with higher degree polynomials than
cubic was addressed. Here we address fourth degree circle approximations
methods with O(α8) convergence. The methods addressed are:

• The simplest Taylor expansion of the free variables.
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t 10.80.60.40.20

0.0001

0
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Figure 7.11: The estimated error function for calculating the constant c3 in
the ellipse approximation by a zero integral of q(p(t)) with weighted coeffi-
cients.

Circle approximation Example Inside error Outside error
Simplest 110 −1.1× 10−7 2.6× 10−8
Minimum square sum 111 0 6.6× 10−8
Equioccilating 112 −1.8× 10−8 1.8× 10−8

Table 7.4: The table shows a summary of different fourth degree circle ap-
proximations and how the error behaves. The circle segment approximated
has opening angle 1 and is a part of a unit circle.

• Minimizing the square sum of the coefficients of q(p(t)) when expressed
in a eight degree Bernstein basis.

• Approximated equioscillation of q(p(t)).

Table 7.4 gives a short overview of the methods and their error behavior
when approximating a segment with opening angle 1 of a unit circle.

Description of Circle Segment. The circle segment is described by

c(θ) =

µ
cos θ
sin θ

¶
, θ ∈ [−α

2
,
α

2
] (7.21)

with the algebraic description q(x, y) = 0, where

q(x, y) = x2 + y2 − 1. (7.22)
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Description of Interpolant. We interpolate the position and tangent of
the circle segment for θ = −α

2
and θ = α

2
, and use the following inter-

polant p(t) using a fourth degree Bernstein basis

p(t) = (x(t), y(t)) =
4X

i=0

pi

µ
4

i

¶
(1− t)4−iti, (7.23)

where

p0 =

µ
cos α

2

− sin α
2

¶
p1 =

µ
cos α

2

− sin α
2

¶
+ L(α)

µ
sin α

2

cos α
2

¶
p2 =

µ
1 + d(α)

0

¶
p3 =

µ
cos α

2

sin α
2

¶
− L(α)

µ
− sin α

2

cos α
2

¶
p4 =

µ
cos α

2

sin α
2

¶
.

The only unknown quantities in this description are L(α) and d(α).
The problem is how to control these tangents to get a best possible
approximation.

Lemma 106 Let the fourth degree interpolant p(t) to the circle segment be
described as in (7.23) and let the algebraic description of the circle q(x) = 0
be described as in (7.22) then

q(p(t)) = 28a(α)(1− t)6t2 + 56b(α)(1− t)5t3

+70c(α)(1− t)4t4 + 56b(α)(1− t)3t5 + 28a(α)(1− t)2t6,

where

a(α) =
1

7

¡
3 cos α

2
+ 3d (α) cos α

2
− 3 + 4(L(α))2

¢
b(α) =

1

7

µ
2(cos α

2
+ L (α) sin α

2
) cos α

2
− 8

+6
¡
cos α

2
+ L (α) sin α

2

¢
(1 + d (α))

¶

c(α) =
1

35

µ
34 cos2 α

2
− 52 + 64

¡
sin α

2

¢
L (α) cos α

2

+16(L (α))2 − 32(L (α))2(cos α
2
)2 + 18(1 + d(α))2

¶
Proof. Can be verified by expansion of the expressions.
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Theorem 107 Let the circle segment and the fourth degree interpolant p(t)
be defined as in lemma 106. If d(α) and L(α) have either the Taylor expan-
sion

d(α) = 1
24
α2 + 1

24

³
35
48
−
√
2
2

´
α4 +O(α7)

L(α) = 1
4
α+ 1

6

³
3
√
2

16
− 1

4

´
α3 + 1

120

³
5
√
2

32
− 167

768

´
α5 +O(α6),

(7.24)

or

d(α) = 1
24
α2 + 1

24

³
35
48
+
√
2
2

´
α4 +O(α7)

L(α) = 1
4
α− 1

6

³
1
4
+ 3

√
2

16

´
α3 − 1

120

³
167
768
+ 5

√
2

32

´
α5 +O(α6),

(7.25)

and a(α), b(α) and c(α) are all O(α8).

Proof. First let

d(α) = 1
24
α2 + 1

24

³
35
48
−
√
2
2

´
α4 + 1

5040
d7α

7 + 1
40320

d8α
8 +O(α9)

L(α) = 1
4
α+ 1

6

³
3
√
2

16
− 1

4

´
α3 + 1

120

³
5
√
2

32
− 167

768

´
α5

− 1
3360

d7α
6 + 1

5040
L7α

7 + 1
40320

L8α
8 +O(α9).

Then the Taylor expansions to 10 terms of respectively a(α), b(α) and c(α)
are

a(α) =
³

1
17640

L7 +
46139

216760320
− 43

√
2

286720
+ 1

94080
d8
´
α8 +O

¡
α9
¢

b(α) =
³
− 125221
108380160

+ 263
√
2

322560
+ 1

8820
L7 +

1
47040

d8
´
α8 +O(α9) (7.26)

c(α) =
³

1
7350

L7 +
160379
90316800

− 809
√
2

645120
+ 1

39200
d8

´
α8 +O(α9).

The 9th degree term contains the d7 constant. Then let

d(α) = 1
24
α2 + 1

24

³
35
48
+
√
2
2

´
α4 + 1

5040
d7α

7 + 1
40320

d8α
8 +O(α9)

L(α) = 1
4
α− 1

6

³
1
4
+ 3

√
2

16

´
α3 − 1

120

³
167
768
+ 5

√
2

32

´
α5

− 1
3360

d7α
6 + 1

5040
L7α

7 + 1
40320

L8α
8 +O(α9),

Then the Taylor expansion to 10 terms of respectively a(α), b(α) and c(α)

a(α) =
³

1
17640

L7 +
46139

216760320
+ 43

√
2

286720
+ 1

94080
d8
´
α8 +O(α9)

b(α) =
³
− 125221
108380160

− 263
√
2

322560
+ 1

8820
L7 +

1
47040

d8
´
α8 +O(α9)

c(α) =
³

1
7350

L7 +
160379
90316800

+ 809
√
2

645120
+ 1

39200
d8
´
α8 +O(α9).
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The 9th degree term contains the d7 constant.

Corollary 108 All circle approximations methods of the type given in equa-
tion (7.23) satisfying conditions (7.24) or (7.25) are O(α8).

Proof. Theorem 107 establish O(α8), while theorem 92 connects the con-
vergence rate to the error.

Corollary 109 Choosing

d(α) = 1
24
α2 + 1

24

¡
35
48
− 1

2

√
2
¢
α4

L(α) = 1
4
α+ 1

6

¡
3
16

√
2− 1

4

¢
α3 + 1

120

¡
5
32

√
2− 167

768

¢
α5

establish a simple circle approximation method with convergence rate O(α8).

The Bernstein coefficient of the approximation in corollary 109 and the
Taylor expansion with 11 terms are

a(α) =
¡

46139
216760320

− 43
286720

√
2
¢
α8 +O (α10)

≈ 7.646487806× 10−7α8 +O (α10)

b(α) =
¡
− 125221
108380160

+ 263
322560

√
2
¢
α8 +O (α10)

≈ −2.304627712× 10−6α8 +O (α10)

c(α) =
¡
160379
90316800

− 809
645120

√
2
¢
α8 +O (α10)

≈ 2.271691708× 10−6α8 +O (α10) .

Example 110 The error of this simple degree eight circle approximation
method, is shown in figure 7.12.

We now look at the circle approximation resulting from minimizing the
square sum of the coefficients of q(p(t)). Since we already have got an O(α8),
based on (7.23), see theorem 107, then theorem 80 states that minimizing
the square sum of the coefficient of q(p(t)) gives an O(α8) approximation.

Example 111 (Minimum Square Sum Degree Four Circle approx.)
Let α = 1. Since α is fixed, we now denote the coefficients of q(p(t)) respec-
tively a, b and c. Using ten digits accuracy, we get the following description
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t 10.80.60.40.200

Figure 7.12: Approximated error estimate for the simplest approximation
with 4th degree Bezier curve to a circle segment of opening angle α = 1 and
radius 1. The error varies between −1.1×10−7 and 2.6×10−8. Compared to
the error the simples 3rd degree approximation which was between 6.5×10−5
and 3.4× 10−6.

of the coefficients:

a = −.0 52464 6163 + . 37610 68123d+ 4
7
L2

b = −. 92281 39564 + . 12021 01407L

+6
7
(. 87758 25619 + . 47942 55386L) (1 + d)

c = −. 73756 74517 + . 76934 49006L− . 24699 53399L2 + 18
35
(1 + d)2 .

(7.27)
The square sum of the coefficients is

f(d, L) = 2a2 + 2b2 + c2.

This expression attains a local minimum for

d = 4. 25835 2237× 10−2

L = 0. 25256 09794.

We obtain the following values for a, b and c

a = 1. 07846× 10−6

b = −.00000 20001
c = .00000 24376.

As before the expression q(p(t))
2

is a good estimate of the error. In figure
7.13 we plot the error estimate of this circle approximation. The maximum
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t 10.80.60.40.20

0

0

Figure 7.13: The error in the circle approximation error resulting from finding
an approximate minimum of the square sum of the coefficients of q(p(t)) for
opening angle α = 1.0. The maximal error is less than 6.6× 10−8. Which is
approximately half of the error the simplest circle approximation.

value of the error is approximately half of the error for the simplest O(α8)
approximation method.

As in Section 7.2 we can produce a wide variety of circle approximations
with the 4th degree Bezier curve. E.g. an equioscillating circle approximation
is assumed to exist. The error estimate q(p(t))

2
of this has the shape of the

8th degree Bezier function equioscillating function defined by the vertices

(0, 0, 1,−u, v,−u, 1, 0, 0),

where u and v can be shown to be by lengthy calculations to be

v = (28 + 20u+ 9u2 − 3
√
3(2 + u)2)/10

u = 2(
√
3− 6)/9 + 2

√
2(K

3/4
2 +K

1/2
3 )/(9K

1/6
1 K

1/4
2 )

K3 = 54
√
2(1 +

√
3)K

1/2
1 + (5 + 32

√
3 + (16 + 14

√
3−K

1/3
1 )K

1/3
1 )K

1/2
2

K2 = −5− 32
√
3 + (8 + 7

√
3 +K

1/3
1 )K

1/3
1

K1 = −172 + 3
√
3(−55 + 54

q
2(1 +

√
3)).

A numeric approximation to u and v with 50 digits in Maple gives

u = 3.3975842919587644617862134245043548479555002743432

v = 4.845962784049467271367758780114917624986467464035.

170



t 10.80.60.40.20

0

0

0

0

Figure 7.14: The error in the degree four circle approximation with equioscil-
lation of q(p(t)) for opening angle α = 1.0. The maximal error is less than
1.8× 10−8. This is approximately 1

6
of the error of the simplest degree four

circle approximation, and 1
3
of the circle approximation with the minimum

square sum of the coefficients of q(p(t)).

Example 112 (Fourth Degree Equioscillating Circle Approximation.)
We now make an approximation to the equioscillating error function by using
a, b and c as defined in (7.27) with ten digit accuracy. We then solve the
equation

a u = −b
a v = c

to enforce the equioscillation. The approximative solution we find is

L = 0. 25255 0802

d = 4. 25900 3677× 10−2,

which gives the following values

a = 5. 9101× 10−7

b = −.00000 20073
c = 0.00000 28641.

Then in figure 7.14 we show the plot of error estimate q(p(t))
2
. Note that the

error is less than 1
3
of the error for the approximation with minimum square

sum of the coefficients.
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Appendix A

PosProd Basis Functions

In this appendix we look into the most used basis functions in CAD/CAM-
systems and show that these are Pos Prod Basis functions. In Appendix
A.1 we address tensor product B-splines. Then in respectively appendix A.2
and A.3 we address Bernstein Bases defined over a simplex and the tensor
product Bernstein Bases.

A.1 Tensor Product B-splines

The B-spline basis functions are piecewise polynomials of degree n = k − 1
defined over a knot vector {t1, . . . , tN+k} where ti+k > ti and ti+1 ≥ ti and
satisfy

NX
i=1

Bi,k(t) = 1

Bi,k(t) > 0, ti < t < ti+k i = 1, . . . , N (A.1)

Bi,k(t) ≥ 0, tk ≤ t ≤ tN+1.

From the total knot sequence {t1, . . . , tN+k} we take the smaller sequence
{tk, . . . , tN+1}, if ti = . . . = ti+r−1 we say that r is the multiplicity of the
knot value ti. A knot vector where all knots have multiplicity equal to the
polynomial order k is called a Bernstein knot vector.
Condition 1. in definition 24 on page 46 is satisfied by (A.1). By theorem

3.1 in [Moerken:91-1] condition 2. in definition 24 is satisfied. Thus, the B-
spline basis is a Pos Prod Basis. In addition the theorem in [Moerken:91-1]
can be used as the basis for a PosProd Algorithm for B-splines.
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Basis functions built by tensor products of B-spline basis functions

Bi,n(s) =

gY
l=1

Bip,(np+1)(sp)

also satisfy the conditions 1. and 2. in definition 24, because we can apply
the results of the univariate case to each variable separately.
Thus, all manifolds defined by NURBS with positive weights are R-

positive manifolds. The most used of these are:

• 2D NURBS curves with positive weights.

• 3D NURBS curves with positive weights.

• 3D NURBS surfaces with positive weights.

A.2 Bernstein Bases over Simplices

Bernstein basis functions built over a simplex S

S = {β1q1 + . . .+ βg+1qg+1 | β1 + . . .+ βg+1 = 1, 0 ≤ βi}

with corners q1, . . . ,qg+1, in IRg can be defined by barycentric coordinates
(β1(s), . . . , βg+1(s)) that satisfy

µ
q1 . . . qi−1 qi qi+1 . . . qg+1
1 . . . 1 1 1 . . . 1

¶⎛⎜⎝ β1
...

βg+1

⎞⎟⎠ =

µ
s
1

¶
.

Here β1(s) + . . . + βg+1(s) = 1 is just the last equation. For references see
[Sederberg:84-2], [Farin:86] and [de Boor:87-1]. When s ∈ S, s has to be a
convex combination of the corners of the simplex. By Cramers rule we get

βi(s) =

¯̄̄̄
q1 . . . qi−1 s qi+1 . . . qg+1
1 . . . 1 1 1 . . . 1

¯̄̄̄
¯̄̄̄
q1 . . . qg+1
1 . . . 1

¯̄̄̄ , i = 1, . . . , g + 1.

Bernstein basis functions built over a simplex S are defined by

Bi,n(s) = n!

g+1Y
l=1

(βl(s))
il

il!
=

n!

i1! . . . ig+1!
(β1(s))

i1 . . .
¡
βg+1(s)

¢ig+1 . (A.2)
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Here we have used n instead of n since we have the same maximal polynomial
degree in all variables. The index set I is defined by

I = {(i1, . . . , ig+1) | i1 + . . .+ ig+1 = n, il ∈ IN0, l = 1, . . . , g + 1}.

The number of multi indices in I are N =

µ
n+ g

g

¶
, which can be proved by

recursion on n+ g.

Lemma 113 The Bernstein basis functions built over a simplex defined as
in equation (A.2) satisfyX

i∈I
Bi,n(s) = 1 (A.3)

Bi,n(s) ≥ 0, i ∈ I, s ∈ Ω.

Proof. See [Farin:86] or [de Boor:87-1].

Lemma 114 Let the functions p(s) and q(s) in g-variables be represented by
Bernstein basis functions over a simplex.

p(s) =
X
i∈Ip

piBi,np(s)

q(s) =
X
j∈Iq

qjBj,nq(s).

Then the product of p(s)q(s) can be expressed as

p(s)q(s) =
X
i∈Ip

X
j∈Iq

piqjBi,np(s)Bj,nq(s)

=
X
k∈Ipq

gkBk,np+nq(s),

where k =(k1 . . . , kg+1), j = (j1, . . . , jg+1) and i = (i1, . . . , ig+1) with

gk =
np!nq!

(np + nq)!

min(kl,np)X
il=max(0,kl−nq)

l=1,...,g+1

g+1Y
l=1

µ
kl
il

¶
pi qk−i. (A.4)

If the coefficients satisfy

pi ≥ 0, i ∈Ip
qj ≥ 0, j ∈Iq,

then
gk ≥ 0, k ∈Ipq.
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Proof. See [Farin:86] or [de Boor:87-1].
Equation (A.4) is a PosProd Algorithm since, as stated in theorem 29, gk

are calculated as a convex combination of all pi qj.
Thus manifolds described by simplical rational Bernstein Bases with pos-

itive weights are R-positive manifolds. The most used of these are:

• 2D Bezier curves with positive weights. (This is a special instance of
2D NURBS curves)

• 3D Bezier curves with positive weights. (This is a special instance of
3D NURBS curves)

• 3D rational triangular Bezier surfaces with positive weights.

3D rational tetrahedral Bezier volumes with positive weights are not in-
cluded. This as the definition of R-positive manifolds requires that the di-
mension of the manifold is lower than the dimension of the space in which
the manifold lies.

A.3 Tensor Product Bernstein Basis

The tensor product Bernstein basis is a special instance of the B-spline bases.
Knot insertion can bring a B—spline represented function to a Bernstein knot
vector and thus to the representation as a set of Bernstein basis represented
functions. The overhead of the extra knots in a Bernstein knot vector is not so
severe when products of functions are calculated as it is in the representation
of the original functions. Since the algorithms for Bernstein basis represented
objects are simpler than with B-spline basis represented objects, we go into
some detail here, although the properties are already shown in Appendix A.1
on tensor product B-splines.

Example 115 Let pi(s), i = 1, . . . ,m be univariate B-spline represented
functions with N coefficients of order k with k-tupple knots at the ends and
single internal knots. The piecewise polynomial functions consist of N−k+1
polynomial segments. The same function represented with a Bernstein knot
vector requires (N − k + 1)k coefficients. The overhead compared to the B-
spline representation is

(N − k + 1)k −N.

When we make products of m such functions the overhead will not grow
while the total storage for the Bernstein knot vector representation will be
(N − k + 1)((k − 1)m + 1). Now making the quotient between the overhead
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and what is needed for storage of the product of m functions with a Bernstein
knot vector we get

(N − k + 1)k −N

(N − k + 1)((k − 1)m+ 1)
=

k − N
N−k+1

(k − 1)m+ 1
≤ k − 1
(k − 1)m+ 1

<
1

m
.

Thus, as the number of functions being multiplied increase, the relative effect
of the overhead is small compared to the total number of coefficients. When
the functions are at least C1 relative simple techniques can be used to store
the functions with a reduced Bernstein knot vector with k−2 multiple internal
knots, thus bringing the overhead further down.

An algorithm for calculating the coefficients of the product of two bi-
variate Bernstein basis represented functions is given in [Farouki:88]. This
algorithm is generalized in the following lemma.

Lemma 116 Let the functions p(s) and q(s) in g-variables defined over the
unit cube in IRg be represented in a tensor product Bernstein basis

p(s) =

nlX
il=0

l=1,...,g

pi1,...,ig

gY
r=1

Bnr
ir (sr)

q(s) =

mlX
il=0

l=1,...,g

qi1,...,ig

gY
r=1

Bmr
ir
(sr)).

Here

Bm
i (u) =

µ
m
i

¶
ui(1− u)(m−i),

and
nlX
il=0

l=1,...,g

=
n1X
i1=0

. . .

ngX
ig=0

.

Then the product of p(s) and q(s) can be expressed as

p(s)q(s) =

nlX
il=0

l=1,...,g

mkX
jk=0

k=1,...,g

pi1,...,igqj1,...,jg

gY
r=1

¡
Bnr
ir (sr)B

mr
jr (sr)

¢

=

nl+mlX
il=0

l=1,...,g

gi1,...,ig

gY
r=1

Bnr+mr
ir

(sr),
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where

gi1...,ig =

min(il,nl)X
pl=max(0,il−ml)

l=1,...,g

cp1,...,pgdi1−p1,...,ig−pg

gY
r=1

∙µ
nr
pr

¶µ
mr

ir − pr

¶¸
gY

r=1

µ
nr +mr

ir

¶ . (A.5)

Proof. See [de Boor:87-1].
The product algorithm in (A.5) is a PosProd Product Algorithms since,

as stated in remark 29, the coefficients g(s) are convex combinations of the
coefficients of p(s) and q(s).
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Appendix B

Reformulation of Geometric
Interrogations to Manifold
Intersections

In the main part of the thesis we have concentrated the discussions on prob-
lems related to the intersection of smooth bounded manifolds in IRl. We
address in this appendix a number of geometric interrogations problems that
can be reformulated to intersection of manifolds. Many of the reformulations
addressed are implemented in the SISL library [SISL:94]. This appendix is
based on the work in [Dokken:85].
The intersection algorithms in SISL - SINTEF Spline Library are based

on an intersection kernel that address the intersection of two manifolds of
possibly different dimensions. The manifolds being intersected in SISL are:

• 0-manifolds (points) in IR2 and IR3.

• NURBS represented 1-manifolds (curves) in IR2 and IR3.

• NURBS represented 2-manifolds (surfaces) in IR3.
A special feature in SISL is the possibility to find common zeroes of

two NURBS represented functions defined on the same 1-dimensional or 2-
dimensional compact domain. The functions are expanded to 1-manifolds in
IR2 or 2-manifolds in IR3 when properties of manifold intersections have to
be used. This feature has enabled the implementation of a wide range of
intersection related functions in SISL.
We address in this appendix such functionality integrated into SISL, but

also look at possibilities emerging with an intersection kernel handling higher
dimensional manifolds than 2-manifolds and higher dimensional real spaces
than IR3. The discussion is structured as follows:
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• In Appendix B.1 we address:

— The intersection of algebraic curves and parametric curves in IR2.

— The intersection of algebraic surfaces and parametric curves in
IR3.

— The intersection of algebraic surfaces and parametric surfaces in
IR3.

• Generating silhouette curves of different kinds is addressed in Appendix
B.2.

• Projection of a manifold onto another manifold is addressed in Appen-
dix B.3.

• Finding extremal points on a curve or surface with respect to a direction
is in SISL converted to searching for extremal values of a function
defined over the parameter domain of respectively a curve or a surface.
The same is the case for finding the points on a curve or a surface
being closest to a given point, or the points on two curves being closest.
Aspects of searching for extremal values of such functions are addressed
in Appendix B.4.

B.1 Intersection of Parametric Represented
Manifolds and Hypersurfaces

In Section 2.5.5 we showed that the dimensionality of an intersection problem
can be reduced by combining parametric described manifolds and hypersur-
faces. Many of the interrogation problems in CAD-systems can be formulated
in such a way. In SISL the following intersections have been implemented by
using such combinations:

• Intersection of a NURBS curve and a straight line in IR2.

• Intersection of a NURBS curve and a circle in IR2.

• The intersection of a general second degree algebraic curve and a NURBS
curve.

• The intersection of a NURBS surface and a plane in IR3.

• The intersection of a NURBS surface and a sphere in IR3.
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• The intersection of a NURBS curve and a torus in IR3.

• The intersection of a general second degree algebraic surface and a
NURBS surface in IR3.

• The intersection of a straight line and a NURBS surface.

• The intersection of a circle and a NURBS surface.

• The intersection of a torus and a NURBS surface.

The simplest extensions to higher dimensional problems is the intersection
of 1- and 2-manifolds with hypersurfaces. This results in finding zeroes of
functions in 1 or 2 variables and can for NURBS represented geometries
be addressed by SISL. However, the intersection of manifolds of dimension
g > 2 and hypersurface requires an intersection kernel handling manifolds of
dimension g > 2.
The main challenge of combining algebraic and parametric representa-

tions is to ensure that the functions resulting from the combination have
minimal rounding errors. In Section 4.1 we addressed the problem of combin-
ing R-positive manifolds with hypersurfaces, and showed in Section 4.2 that
the use of PosProd Algorithms resulted in a controlled growth of the relative
rounding errors. An alternative to PosProd Algorithms is to use methods
that reproduce polynomial behavior. One such method is B-spline interpo-
lation. However, as the algebraic degree is growing, the condition number of
the coefficient matrix of the B-spline interpolation increases. Although the
condition number reflects a worst case, practical experience has shown that
the use of PosProd Algorithms is to be preferred over interpolation methods.

B.2 Finding Silhouette Curves in IR3

In SISL three different silhouette calculations have been implemented by
reformulation approach:

• Parallel silhouettes.

• Perspective silhouettes.

• Circular silhouettes.

To give a complete silhouette calculation we have to consider both:
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• The zeroes of the function representing the reformulated silhouette
problem.

• Edges and break lines.

In all of the silhouette calculations the normal vector of the surface play
a central role. Thus, we address the normal vector in Section B.2.1.

B.2.1 The normal vector

When a surface p(s1, s2) of degree (n1, n2) is nonrational the normal is as we
know

n(s1, s2) =
∂p(s1, s2)

∂s1
× ∂p(s1, s2)

∂s2
.

Resulting in a polynomial degree for the normal of (2n1 − 1, 2n2 − 1).
In case p(s1, s2) is rational, the degrees of the numerator of n(s1, s2) are

(4n1 − 1,4n2 − 1), and of the denominator (4n1, 4n2). However, the denomi-
nator h(s, t) is a factor in both the numerator and denominator of n(s1, s2).
Thus, cancelling this we get degrees (3n1 − 1,3n2 − 1) in the numerator and
(3n1, 3n2) of the denominator.
To control the propagation of the rounding error, PosProd Algorithms

can be used for making the normal vector.

B.2.2 Parallel Projection Silhouette in IR3

The silhouettes of the parallel projection in a direction e are points where

n(s1, s2) · e = 0.

The polynomial order is related to the polynomial order of n(s1, s2) which is
given above.

B.2.3 Perspective Silhouette in IR3

The silhouette curves resulting from a perspective projection with respect to
a point p0 have to satisfy

n(s1, s2) · (p(s1, s2)− p0) = 0.

The polynomial degrees of the numerator is (4n1 − 1,4n2 − 1) and of the
denominator (4n1, 4n2). If the surface is nonrational the polynomial degree
is (3n1 − 1, 3n2 − 1).
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B.2.4 Circular Silhouette in IR3

Let p(s1, s2) be a point on a surface and n(s1, s2) be the normal in p(s1, s2).
Let q be a point on an axis and b be the direction vector of the axis. The
circular silhouette curves are defined by

n(s1, s2)× (p(s1, s2)− q) · b = 0.

The polynomial degrees of the numerator is (4n1 − 1,4n2 − 1) and of the
denominator (4n1, 4n2). If the surface is nonrational, the polynomial degree
is (3n1 − 1, 3n2 − 1).

B.3 Projection of a Manifold onto another
Manifold

These functions are not implemented in SISL but can be of use in geometric
modeling systems. Two problems are addressed:

• Normal projection of a manifold onto another manifold.

• Parallel projection of a manifold onto another manifold.

B.3.1 Normal Projection

The normal projection of a g1-manifold p(s) onto a g2-manifold q(t) can be
formulated as

(q(t)− p(s)) · ∂q(t)
∂ti

= 0, i = 1, . . . , g2,

resulting in g2 functions in g1 + g2 variables.

Remark 26 For g1 = g2 = 1 we have the normal projection of a curve onto
another curve.

Remark 27 For g1 = 1 and g2 = 2 then we have the normal projection of a
parametric curve onto a parametric surface.

Remark 28 For g1 = 2 and g2 = 1 we have an the intersection of the normal
plane of a parametric curve with a parametric surface.
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B.3.2 Parallel Projection

The parallel projection of a parametric g1-manifold p(s) onto a parametric
g2-manifold q(t) in IRl satisfies

(q(t)− p(s)) · nj = 0, j = 1, . . . , l − 1.

Here nj, j = 1, . . . , l−1 are linearly independent vectors normal to projection
direction e. The result is l − 1 functions in g1 + g2 variables.

Remark 29 If p(s) and q(t) both are in IR3, g1 = 1 and g2 = 2, then we
have the parallel projection of a curve onto a surface. Interchanging g1 and
g2 does not change the geometric interpretation.

B.4 Reformulation to extremal value prob-
lems.

Many problems can be reformulated to finding the extremal value of a func-
tion defined over the parameter domain of a manifold or of the tensor product
of the parameter domains of two manifolds.
Let Ω ∈ IRg, be a bounded set over which we define a continuous function

f : Ω→ IR that is piecewise smooth, and where the smooth pieces are limited
by a set Ωb that can be decomposed into (g − 1)-manifolds contained in Ω.
Ωb is thus also containing the boundary of Ω. To find the maximal values of
the function the following approaches can be used:

• Use a tradition analyses of extremal values based on (partial) deriva-
tives and analysis of the behavior of the function along the manifolds
describing the piecewise smooth structure Ωb.

• Apply a direct search for the extremal values by combining iteration
and subdivision techniques.

In SISL the last approach is employed for efficiency reasons. This to
make a generic tool for finding extremal values of NURBS based functions in
one or two variables. However, this approach is also too slow when repeated
use of the extremal value calculation is necessary. In these cases an itera-
tion using as start point the result of the previous search for an extremal
value, can be used. In these cases it is often too expensive to evaluate the
function f for each search, and the iteration is performed on the original
geometries. However, the iterations can fail and fallback strategies have to
be implemented.
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In SISL the following problems are addressed using the search for extremal
values:

• Find the point closest to a given point q on a NURBS represented curve
p(s). The function searched for extremal values is

f(s) = (p(s)− q) · (p(s)− q).

This is the same as the function for the intersection of a circle or sphere
of radius 0 and a curve.

• Find the point closest to a given point q on a NURBS represented
surface p(s). The function searched for extremal values is

f(s, t) = (p(s, t)− q) · (p(s, t)− q).

This is the same as the function for the intersection of a circle or sphere
of radius 0 and a surface.

• Find the closest points between two NURBS represented curves p(s)
and q(t). The function searched for extremal values is

f(s, t) = (p(s)− q(t)) · (p(s)− q(t)).

• Find the extremal point(s) on a NURBS represented curve p(s) in the
direction d. The function searched for extremal values is

f(s) = p(s) · d.

• Find the extremal point(s) on a NURBS represented surface p(s, t) in
the direction d. The function searched for extremal values is

f(s, t) = p(s, t) · d.
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