Multivariate Splines Reference Manual

Generated by Doxygen 1.3.6

Fri Mar 18 16:43:00 2005

Contents

1 Multivariate Spline Library
1.1 Whatisthis. L o
1.2 Whatisincluded oL

1.3 Sampleuse

2 Multivariate Splines Hierarchical Index

2.1 Multivariate Splines Class Hierarchy

3 Multivariate Splines Class Index

3.1 Multivariate Splines Class List

4 Multivariate Splines Page Index

4.1 Multivariate Splines Related Pages

5 Multivariate Splines Class Documentation

5.1 Go::GoApproximator< M, T > Class Template Reference

5.2 Go
5.3 Go:
54 Go:
5.5 Go:
5.6 Go:
5.7 Go:
5.8 Go:
5.9 Go:
5.10 Go
5.11 Go

::GoBorrowedMVGrid< M, T > Class Template Reference . .
:GoGenericGrid< M, T > Class Template Reference
:GoHybridApproximator< M, T > Class Template Reference

:GoNeutral Approximator< M, T > Class Template Reference

:GoScalableGrid< T > Class Template Reference

::GoSelfcontainedGrid< M, T > Class Template Reference . .
::GoTensorProductSpline< M, T > Class Template Reference

6 Multivariate Splines Page Documentation

6.1 Practicalexample. L Lo,

:GoKnotremovalApproximator< M, T > Class Template Reference

:GoLeastSquareApproximator< M, T > Class Template Reference

:GoSchoenbergApproximator< M, T > Class Template Reference

Lo =

[543}

11
11
14
17
29
32
35
38
40
45
48
51

65

Chapter 1

Multivariate Spline Library

1.1 What is this

This library is designed for the manipulation of multi-indexed data in general and multivariate
tensor-product splines in particular. Examples of multi-indexed data are usual vectors (one index)
and matrices (two indices), but arrays with arbitrary number of indices can be constructed with
equal ease. Several different grid classes are provided that are specially adopted for different
needs. Such multi- indexed grids can be copied, read and written, reshaped, permuted on their
indices, added together, multiplied and several other operations. The multivariate spline class
represents a scalar spline (values in R) that is parameterized on an arbitrary number of parameters.
This can be useful to describe smooth scalar fields that can be evaluated anywhere inside the
parametric domain. Many operations can be used on the spline, including pointwise evaluation,
evaluation inside a predefined area, knot insertion and order raising, reduction to a spline with
fewer parameters, fitting to discrete, multi-indexed data, reading, writing, copying and many other
operations. For the purpose of fitting such a spline to multi-indexed, discrete data, many methods
can be used.

1.2 What is included

The main thee categories of objects are grids, splines and approximators.

1.2.1 Grids

There are several flavors of multi-indexed grids. Often, the user might have a bulk of data some-
where in memory that he or she wants to represent on a grid form, allowing for indexing to a
specific element, permuting, streaming, etc. In that case, it is not necessary for the grid to own
the data it refers to. In fact, ownership of such data would often be highly un-recommendable ,
since the data arrays can be very big and we want to avoid unnecessary copying and shuffling
around of the data. (Often when working with multi-indexed data, the sheer size of the data can
make it very impractical to work with unless it is stored centrally in one place and then referred to
from various other objects). For this purpose we have created the template class Go::GoBorrowed-
MVGrid<int, typename>. The first template parameters defines how many indices the grid has
(one - "vector", two - "matrix"...), and the second tells which kind of elements are contained in
the grid.

A disadvantage working with grids that do not own their data is that we always have to keep track

2 Multivariate Spline Library

of who does . Moreover, whenever creating or resizing an existing grid, we have to keep in mind
how much memory is actually available at the location the grid refers to. It is, for instance, fully
possible to resize a grid such that it can refer to elements that haven’t been allocated in memory in
the first place. For small and medium-sized grids, it can often be useful to let the grids own their
actual data. Such a grid would automatically allocate enough memory when created or resized,
and would delete it when it goes out of scope. It would be much slower to copy, but in some cases
that can be perfectly tolerated. In this library, there are two grid that serve this purpose. The
first is a template class called Go::GoSelfcontainedGrid<int, typename>, which is very similar to
the previously described Go::GoBorrowedMVGrid<int, typename>, except that it has ownership
to its data. (In fact, these two grids both derive from a base class template called Go::GoGeneric-
Grid<int, typename>). The second self-owning grid is called Go::GoScalableGrid<typename>.
This grid is only a template on the type of elements it contains, while the number of indices can
be set (and changed) runtime.

1.2.2 Spline

There is only one multivariate spline class in this library, Go::GoTensorProductSpline<int,
typename>. It is a template on number of parameters and type of element the coefficients should
be. The actual element used must support basic arithmetic operations and also be multipli-
able with a double. Note that the spline’s knot-vectors (one for each parameter) will always be
defined using double. The spline stores its control points in a grid of type Go::GoBorrowed-
MVGrid(p. 14)<int, typename> and thus does not own the memory area used for storing them.
With other words, it is the user’s responsibility to allocate the required memory before constructing
the spline, as well as keep track of when it should be deleted.

Note:

One immediate use of this design is that the user can always express an already-existing
multi-indexed dataset somewhere in memory as a linear spline , thus making it possible to
continuously interpolate the values in the dataset.

Contrary to the well-known spline curves and surfaces, who usually take values in R? or
R3, the Go::GoTensorProductSpline(p. 51) takes its values in R only. This means that
if a user wants to express a curve or surface, she will have to use several objects of type
Go::GoTensorProductSpline(p. 51); one for each spatial dimension. A utility function,
Go::createSplineSurface(...) is provided to convert such a group of Go::GoTensorProduct-
Spline(p. 51) to the perhaps more familiar Go-object Go::SplineSurface.

1.2.3 Approximators

Approximators is a kind of objects that are used in conjunction with Go::GoTensorProduct-
Spline(p. 51) to make the latter approximate a given dataset. Each approximator class defines an
approximation method to use for this data fitting process. When the user wants to create a spline
approximation of a given, multi-indexed dataset, he first has to allocate enough memory and create
a Go::GoTensorProductSpline(p. 51) with one parameter for each index in the dataset (ex. a
4-indexed dataset required a 4-variate spline). He then should call the Go::GoTensorProduct-
Spline(p. 51) member function Go::GoTensorProductSpline::fit()(p. 59) with an array of the
approximators that describe the kind of approximation he wants. There must be one approximator
defined for each parameter in the spline (so in our example, we would need four approximators).
All approximator derive from the abstract base class Go::GoApproximator(p.11). Currently
defined approximators are:

e Go::GoLeastSquareApproximator(p. 35) (penalized least squares approximation)

¢ Go::GoSchoenbergApproximator(p.45) (variation diminishing approximation)

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

1.3 Sample use 3

¢ Go::GoKnotremovalApproximator(p. 32) (approximation using the knot-removal algo-
rithm)

¢ Go::GoHybridApproximator(p.29) (constrained least squares that tries to limit over-
shoots)

¢ Go::GoNeutralApproximator(p. 38) (no approximation along this parameter direction)

1.3 Sample use

The following Practical example(p. 65) page describes an imagined session where a user benefits
from this library’s classes and functions to manage the output from a big atmospheric simulation.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

Multivariate Spline Library

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

Chapter 2

Multivariate Splines Hierarchical
Index

2.1 Multivariate Splines Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Go::GoApproximator<< M, T > L e e
Go::GoHybridApproximator< M, T >
Go::GoKnotremovalApproximator< M, T >
Go::GoLeastSquareApproximator< M, T >
Go::GoNeutralApproximator< M, T >
Go::GoSchoenbergApproximator< M, T >

Go::GoGenericGrid< M, T > e
Go::GoBorrowedMVGrid< M, T >
Go::GoSelfcontainedGrid< M, T > oo

Go::GoScalableGrid< T >

Go::GoTensorProductSpline< M, T > o

Multivariate Splines Hierarchical Index

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

Chapter 3

Multivariate Splines Class Index

3.1

Multivariate Splines Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Go:

Go::

Go::
Go::

Go::
Go::

Go::

:GoApproximator< M, T > (The abstract base class for approximator objects,

used by the GoTensorProductSpline(p. 51) class to specify a method for fit-
ting a spline to a given dataset),
GoBorrowedMVGrid< M, T > (This is a multiindexed grid that derives from
GoGenericGrid(p. 17). It does not own the memory array where the elements
arestored) L e

::GoGenericGrid< M, T > (This is a basic, multiindexed grid that carries objects

of type T. The number of indexes is M)

::GoHybrid Approximator< M, T > (Fits the spline to a set of sample values, us-

ing a scheme that minimizes the 12- norm of the error under certain, monotonity-
preserving constraints on the control points)

::GoKnotremovalApproximator< M, T > (Fits the spline to a set of sample

values, using the knot removal scheme (Lyche/Mgrken)).

::GoLeastSquareApproximator< M, T > (Fits the spline to a set of sample

values, using least squares)
GoNeutral Approximator< M, T > (This approximator is "neutral")
GoScalableGrid< T > (A multiindexed grid whose number of indexes can be
changed at runtime)
GoSchoenbergApproximator< M, T >
GoSelfcontainedGrid< M, T > (This is a multiindexed grid that derives from
GoGenericGrid(p.17). It owns its data, which makes copying an expensive
DPIOCESS) & v v i it it e e e e e e e e e e
GoTensorProductSpline< M, T > (This is a template class that represent a
multivariate spline with M parameters and coefficients of type T)

Multivariate Splines Class Index

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

Chapter 4

Multivariate Splines Page Index

4.1 Multivariate Splines Related Pages

Here is a list of all related documentation pages:

Practical example L

10

Multivariate Splines Page Index

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

Chapter 5

Multivariate Splines Class
Documentation

5.1 Go::GoApproximator< M, T > Class Template Refer-
ence

The abstract base class for approximator objects, used by the GoTensorProductSpline(p. 51)
class to specify a method for fitting a spline to a given dataset.

#include <GoApproximator.h>

Inheritance diagram for Go::GoApproximator< M, T >::

‘ Go::GoApproximator< M, T> ‘
T

[I I I
Go::GoHybridApproximator< M, T> | [Goz:GoKnotremoval Approximator< M, T > | [Go::GoLeastSquareApproximator< M, T> | [Go::GoNeutral. i M.T> | [Go:G o i M, T>

Public Member Functions

e virtual void approximate (GoBorrowedMVGrid< M, T > =xorig_data_ array, Go-
BorrowedMVGrid< M, T > xcyclically permuted result array, BsplineBasis &ba-
sis)=0

A call to this function invokes the approzimation algorithm encapsulated in this class on a set
of gridded sample data.

e virtual int approximationSize () const=0

If the approzimation algorithm is of a kind that makes it possible to predict the number of resulting
spline control points (without actually running the algorithm first), then the following function
should return this number.

12 Multivariate Splines Class Documentation

5.1.1 Detailed Description
template<int M, typename T> class Go::GoApproximator< M, T >

The abstract base class for approximator objects, used by the GoTensorProductSpline(p. 51)
class to specify a method for fitting a spline to a given dataset.

When the user wants to fit a multivariate spline (of the GoTensorProductSpline(p. 51) class)
to a given dataset, she has to call the GoTensorProductSpline::fit()(p.59) function. In this
function, she has to specify which methods to use. Each of the M parameters in the spline can be
assigned a method independently of the other parameters. For instance, if we want to approximate
a spline to a computed atmospheric 3D grid (here considered as the "sampled" data), the param-
eters of the spline would typically be latitude, longitude and height. Each of these parameters
could be fitted to the dataset independently, for instance using least squares (GoLeastSquare-
Approximator(p. 35)) to fit the longitude and latitude, and knotremoval (GoKnotremoval-
Approximator(p. 32)) to fit the height. Each class derived from GoApproximator(p.11) rep-
resents a way to fit a spline to a dataset, and the parameters needed to specify the corresponding
algorithm are typically specified in the constructor of the approximator class. The user can also
encapsulate her own fitting algorithms in new objects that derives from GoApproximator(p.11)
and thus have it applied on the spline, without having to rewrite the GoTensorProduct-
Spline::fit()(p. 59) function.

Definition at line 43 of file GoApproximator.h.

5.1.2 Member Function Documentation

5.1.2.1 template<int M, typename T> virtual void Go::GoApproximator< M,
T >::approximate (GoBorrowedMVGrid< M, T > * orig_data_array,
GoBorrowedMVGrid< M, T > x cyclically permuted result array,
BsplineBasis & basis) [pure virtuall

A call to this function invokes the approximation algorithm encapsulated in this class on a set of
gridded sample data.

All necessary parameters or modifiers to the encapsulated approximation algorithm should already
have been set by the class’ constructor or other methods. The sampled data is given in the form
of an M-indexed grid. The approximation takes place along the index with the longest stride (the
last index). In other words, if we have M indexes (0...M-1) and index m counts L,, elements,
then we would consider the dataset a collection of Lj;_; datapoints, where each datapoint has
D= Piz;ng components. The result is then a univariate spline with control points in R” and a
basis B. The resulting spline’s coefficients is written to the grid pointed to by the second argument.
It will be cyclically permuted by one step (see GoGenericGrid::cyclicPermute()(p. 20)) com-
pared to the dataset, which allows us to use it as input for the approximate()(p.12) function of
the GoApproximator(p. 11) object that is to be applied on the next parameter. The generated
basis will be returned in the last argument. The philosophy is that, for an M-variate dataset, apply-
ing the approximate()(p. 12) function M times (usually by M different GoApproximator(p.11)
objects), the first time on the sample data itself, later on the result from the last call of the ap-
proximate()(p. 12) function, then the resulting coefficient grid will be the control points for an
M-variate spline approximating the original dataset. (We have to take care of the basis functions
at each call too, in order to have a complete definition of the spline).

Note:
In practice, all this is taken care of by the GoTensorProductSpline::fit()(p. 59) function,
so the only thing the user should usually be concerned about is the construction and definition
of the desired approximator objects.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.1 Go::GoApproximator< M, T > Class Template Reference 13

Parameters:
orig_data_ array pointer to the gridded data that we want to ’fit’ the spline to. The fitting
will take place along the index with the longest stride, which is the last one.

cyclically permuted result array Pointer to resulting spline’s coefficient grid (to be
filled out by the algorithm). It will be cyclically permuted (see GoGenericGrid::cyclic-
Permute()(p. 20)) by one step.

basis the spline basis resulting from this approximation.

Implemented in Go:GoHybridApproximator< M, T > (p.30), Go::GoKnotremoval-
Approximator< M, T > (p.33), Go::GoLeastSquareApproximator< M, T > (p.36),
Go::GoNeutral Approximator< M, T > (p.38), and Go::GoSchoenbergA pproximator<
M, T > (p.46).

5.1.2.2 template<int M, typename T> virtual int Go::GoApproximator< M, T
>::approximationSize () const [pure virtuall

If the approximation algorithm is of a kind that makes it possible to predict the number of resulting
spline control points (without actually running the algorithm first), then the following function
should return this number.

If this is imossible to predict before execution of the approximation algorithm, (ie. the size of the
approximation depends on the dataset to be approximated), a negative value will be returned. The
absolute value of this negative value, multiplied with the number of datapoints to approximate
(length of index with longest stride in the sample grid), will give an upper estimate about how
much memory is needed to store the spline coefficients.

Returns:
The number of control points if it can be predicted, else a negative value

Implemented in Go::GoHybridApproximator< M, T > (p.31), Go::GoKnotremoval-
Approximator< M, T > (p.33), Go::GoLeastSquareApproximator< M, T > (p.37),
Go::GoNeutralApproximator< M, T > (p.39), and Go::GoSchoenbergA pproximator<
M, T > (p.46).

The documentation for this class was generated from the following file:

e GoApproximator.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

14 Multivariate Splines Class Documentation

5.2 Go::GoBorrowedMVGrid< M, T > Class Template Ref-
erence

This is a multiindexed grid that derives from GoGenericGrid(p. 17). It does not own the memory
array where the elements are stored.

#include <GoBorrowedMVGrid.h>
Inheritance diagram for Go::GoBorrowedMVGrid< M, T >::

| Go::GoGenericGrid< M, T > |

T

| Go::GoBorrowedMVGrid< M, T > |

Public Member Functions

¢ GoBorrowedMVGrid ()

Constructor making an empty, multiindexzed grid with M indices, where each.

¢ GoBorrowedMVGrid (T *data)

Constructor making an empty grid with M indezes. The data storage area is specified.

e GoBorrowedMVGrid (T *data, const int xconst new _size)

Constructor making a M-indezed grid with a given shape.

¢ GoBorrowedMVGrid< M-1, T > subgrid (int i)
Returns a M-1 multiindezed grid which is a subgrid of the ’this’ grid.

void swap (GoBorrowedMVGrid< M, T > &rhs)
Rapidly swap two grids.

e void setDataPointer (T *address)

Define which position in memory the grid should now use for storage/retrieval of its elements.

5.2.1 Detailed Description
template<int M, typename T> class Go::GoBorrowedMVGrid< M, T >

This is a multiindexed grid that derives from GoGenericGrid(p. 17). It does not own the memory
array where the elements are stored.

In other words, it is not an "information carrier", but is only considered to logically simplify access
to a data range that is already present in the computer memory.

Definition at line 35 of file GoBorrowedMVGrid.h.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.2 Go::GoBorrowedMVGrid< M, T > Class Template Reference 15

5.2.2 Constructor & Destructor Documentation

5.2.2.1 template<int M, typename T> Go::GoBorrowedMVGrid< M, T
>::GoBorrowedMVGrid () [inline]

Constructor making an empty, multiindexed grid with M indices, where each.

The created grid is immediately useless, as it has size 0 and no designated storage area. It can
however be assigned to other grids, have its size and data area manually set with other member
functions, etc...

Definition at line 44 of file GoBorrowedMVGrid.h.

5.2.2.2 template<int M, typename T> Go::GoBorrowedMVGrid< M, T
>::GoBorrowedMVGrid (T * data) [inline]

Constructor making an empty grid with M indexes. The data storage area is specified.

The created grid is immediately useless, since it has size 0. It can however be assigned to other
grids, be copied into, have its size and data area manually set with other member functions,
etc...

Parameters:
data pointer to a memory area where elements should be stored

Definition at line 53 of file GoBorrowedMVGrid.h.

5.2.2.3 template<int M, typename T> Go::GoBorrowedMVGrid< M, T
>::GoBorrowedMVGrid (T * data, const int xconst new_size) [inlinel

Constructor making a M-indexed grid with a given shape.

Parameters:
new_ size points to a M-sized array of integers, specifying the shape of the grid (length of
each index).

data pointer to the start of the memory area where the user wants the grid to store/locate
its elements. It is the user’s responsibility that this memory area is allocated and that
its size is sufficient.

Definition at line 63 of file GoBorrowedMVGrid.h.

5.2.3 Member Function Documentation

5.2.3.1 template<int M, typename T> void Go::GoBorrowedMVGrid< M, T
>::setDataPointer (T * address) [inlinel
Define which position in memory the grid should now use for storage/retrieval of its elements.

It is the user’s responsibility that the memory area pointed to is sufficiently large to contain all
elements in the grid.

Definition at line 110 of file GoBorrowedMVGrid.h.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

16 Multivariate Splines Class Documentation

5.2.3.2 template<int M, typename T> GoBorrowedMVGrid<M-1, T>
Go::GoBorrowedMVGrid< M, T >:subgrid (int Z) [inline]
Returns a M-1 multiindexed grid which is a subgrid of the ’this’ grid.

A grid with M indexes (with index lengths Ly, Lo, ... Ljs), can be seen as a set of grids with
(M-1) indexes (where the index lengths are L1, Lo, ... Ly;—1. The number of such subgrids is L.
The reason we can "decompose" the grid this way is because its elements are stored fortran-style
so that the last index has the longest stride. This function returns one of these (M-1)-indexed
grids. The returned grid will share its memory area with the ’this’ grid (actually it is a subset of
it). The returned subgrid should therefore be seen as an independent interpretation of a PART
OF the original grid.

Parameters:
¢ this integer specifies which of the above defined subgrids is to be returned. ¢ could be from

0 to LM—].

Returns:
the subgrid as defined above

Definition at line 80 of file GoBorrowedMVGrid.h.
References Go::GoGenericGrid< M, T >:rowlength().

5.2.3.3 template<int M, typename T> void Go::GoBorrowedMVGrid< M, T
>uswap (GoBorrowedMVGrid< M, T > & rhs) [inline]

Rapidly swap two grids.

Parameters:
rhs the grid to swap with

Definition at line 100 of file GoBorrowedMVGrid.h.

The documentation for this class was generated from the following file:

o GoBorrowedMVGrid.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.3 Go::GoGenericGrid< M, T > Class Template Reference 17

5.3 Go::GoGenericGrid< M, T > Class Template Reference

This is a basic, multiindexed grid that carries objects of type T. The number of indexes is M.
#include <GoGenericGrid.h>

Inheritance diagram for Go::GoGenericGrid< M, T >::

Go::GoGenericGrid< M, T >
: |
Go::GoBorrowedMVGrid< M, T > | | Go::GoSelfcontainedGrid< M, T >

Public Member Functions

e void datacopy (T *new_location) const

Bulk copy of all grid values into a given memory area.

e void fillValue (T value)

This function sets all values in the grid equal to the argument.

e void fillValue (T val, int xlower, int *upper)

Sets all values in a subset of the grid to a particular value.

¢ void clone (Go::GoGenericGrid< M, T > &newgrid) const
Make the argument grid a copy of this grid.

o void read ASCII (std::istream &is)
Reads a grid from a stream, using the ASCII format.

e void write ASCII (std::ostream &os) const
Writes the grid to a stream, using the ASCII format.

e void read BINARY (std::istream &is)
Reads the grid from a stream, using BINARY format.

e void write BINARY (std::ostream &os) const
Writes the grid to a stream, using the BINARY format.

e void dumpCoefs (std::ostream &os) const

Write the contents of a grid to a stream, but not its shape. ASCII format is used.

¢ void dumpCoefs binary (std::ostream &os) const
Write the contents of a grid to a stream, but not its shape. BINARY format is used.

¢ void blockRead (const int *start ix this, const int *start ix other, const int xlen read,
const GoGenericGrid< M, T > &other)

Reads a block of elements from another grid and writes it into the ’this’ grid.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

18

Multivariate Splines Class Documentation

int size () const

Returns the total number of elements in the grid.

T maxElem () const

Returns the mazimum element in the grid.

T minElem () const

Returns the minimum element in the grid.

virtual int resize (const int xconst new _ size)

Redefining the shape of the grid (number of elements in each index).

const int *const rowlength () const

Returns a pointer to the memory area specifying the shape of the grid.

int rowlength (int i) const

Returns the number of elements along index i.

T & operator|] (const int *const coords)

Returns a reference to a specified element in the array.

const T & operator[] (const int xconst coords) const

Returns a const reference to a specified element in the array.

T * getDataPointer ()

Return a pointer to the start of the memory range where elements are stored.

const T xconst getDataPointer () const

Return a const pointer to the start of the memory range where elements are stored.

void operator+= (const GoGenericGrid< M, T > &rhs)
Adds the elements of another grid to ’this’ grid, element by element.

void operator-= (const GoGenericGrid< M, T > &rhs)

Subtracts the elements of another grid from ’this’ grid, element by element.

void operator *= (const T &val)

Multiply each of the elements in the grid by a value.

int findPosition (const int *const pos) const

Finds the memory position of an indezed element, given as an offset from the start of the internal
storage range, as accessed by getDataPointer()(p. 23).

void flipDirection (int dir)

Reverses the ordering of elements in the grid for a given indez.

void permuteElements (const int *permutation)

Re-arranges the orders of the indexes to elements in the grid.

void permuteElements memOpt (int *permutation)

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.3 Go::GoGenericGrid< M, T > Class Template Reference 19

Does the same as permuteElements()(p. 25), but using much less memory.

¢ void cyclicPermute (int steps)

Cyclically permute the indezes of a grid.

5.3.1 Detailed Description
template<int M, typename T> class Go::GoGenericGrid< M, T >

This is a basic, multiindexed grid that carries objects of type T. The number of indexes is M.

The purpose of this grid class is to serve as a base class for other grid classes. Because of imple-
mentation issues, it cannot be abstract, but it should be considered to be, even though it contains
no abstract functions. To enforce this, it doesn’t have any public constructor. The user should
always use one of the derived grid classes.

Note: The indexing of the elements in the grid is done fortran style, ie. the last index has the
longest stride.

Definition at line 40 of file GoGenericGrid.h.

5.3.2 Member Function Documentation

5.3.2.1 template<int M, typename T> void Go::GoGenericGrid< M, T
>::blockRead (const int * start ix_this, const int * start iz _other, const
int x len_read, const GoGenericGrid< M, T > & other) [inline]

Reads a block of elements from another grid and writes it into the ’this’ grid.

This function reads a block of elements from the ’other’ grid and writes it to the current grid.
start index positions for the block in ’this’ grid (target) and the ’other’ grid (source) are given by
the first two arguments. The third argument gives the size (rowlengths) of the block to be read.
If indexation causes a part of the specified block to be out of bounds for the grids involved, an
exception will be thrown.

Parameters:
start ix_this should point to an M-length array specifying the start index position in ’this’
grid, to which the data should be written.

start _ix_other should point to an M-length array specifying the start index position in
the ’other’ grid, from where the data should be read.

len_read should point to an M-length array specifying the shape (number of elements in
each index) of the block to be read/written

other the grid from which to read the elements.

Definition at line 271 of file GoGenericGrid.h.

References Go::GoGenericGrid< M, T >:operator[](), and Go::GoGenericGrid< M, T
>zrowlength().

5.3.2.2 template<int M, typename T> void Go::GoGenericGrid< M, T >::clone
(Go::GoGenericGrid< M, T > & newgrid) const [inline]

Make the argument grid a copy of this grid.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

20 Multivariate Splines Class Documentation

Parameters:
newgrid Reference to a grid (derived from this class) that will be reshaped and filled with
values such that it becomes a copy of ’this’ grid.

Definition at line 113 of file GoGenericGrid.h.

References Go::GoGenericGrid< M, T >::datacopy(), Go::GoGenericGrid< M, T >::getData-
Pointer(), and Go::GoGenericGrid< M, T >:resize().

Referenced by Go::GoNeutralApproximator< M, T >:approximate(), Go::GoKnotremoval-
Approximator< M, T >::approximate(), Go::GoSelfcontainedGrid< M, T >::GoSelfcontained-
Grid(), and Go::GoGenericGrid< M, T >::permuteElements().

5.3.2.3 template<int M, typename T> void Go::GoGenericGrid< M, T
>::cyclicPermute (int steps) [inlinel
Cyclically permute the indexes of a grid.

A cyclical permutation with k "steps" will put the index currently at i in the new position (i -
k)%M

Example: For a 3-indexed grid (i, j, k):

e cyclicPermute(0) - new index order will be (i, j, k) (unchanged)
e cyclicPermute(1) - new index order will be (j, k, 1)
e cyclicPermute(2) - new index order will be (k, i, j)
e cyclicPermute(3) - new index order will be (i, j, k) (unchanged)
e etc...

Parameters:

steps number of steps to cyclic permute

Definition at line 783 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::permuteElements().

Referenced by Go::GoNeutralApproximator< M, T >::approximate(), and Go::GoKnotremoval-
Approximator< M, T >::approximate().

5.3.2.4 template<int M, typename T> void Go::GoGenericGrid< M, T >::datacopy
(T * new_location) const [inline]

Bulk copy of all grid values into a given memory area.

Parameters:
new_ location Pointer to memory area where grid values should be copied.

Definition at line 48 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::size().
Referenced by Go::GoGenericGrid< M, T >::clone().

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.3 Go::GoGenericGrid< M, T > Class Template Reference 21

5.3.2.5 template<int M, typename T> void Go::GoGenericGrid< M, T
>::dumpCoefs (std::ostream & o08) const [inline]

Write the contents of a grid to a stream, but not its shape. ASCII format is used.

The number of data units sent to the stream thus equals the total volume of the grid.

Parameters:
08 the stream to write the contents to

Definition at line 226 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::size().
Referenced by Go::GoGenericGrid< M, T >::write_ ASCII().

5.3.2.6 template<int M, typename T> void Go::GoGenericGrid< M, T
>::dumpCoefs binary (std::ostream & 0s) const [inline]

Write the contents of a grid to a stream, but not its shape. BINARY format is used.

The number of data units sent to the stream this equals the total volume of the grid.

Parameters:
0s the stream to write the contents to

Definition at line 240 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::size().
Referenced by Go::GoGenericGrid< M, T >::write. BINARY().

5.3.2.7 template<int M, typename T> void Go::GoGenericGrid< M, T >::fillValue
(T val, int * lower, int * upper) [inline]
Sets all values in a subset of the grid to a particular value.

This function sets all values to ’val’ in the M-dimensional cube whose lower coordinate corner and
upper coordinate corner is given in "lower’ and 'upper’. ("lower’ and ’upper’ should point to ranges
of M elements, and upper[i] > lower[i] for i ranging from 0 to M-1).

Parameters:
val The value with which to fill the subset

lower Should point to a range of M elements, specifying the "lower" corner of the subset.

upper Should point to a range of M elements, specifying the "upper" corner of the subset.

Definition at line 78 of file GoGenericGrid.h.

References Go::GoGenericGrid< M, T >:operator[](), and Go:GoGenericGrid< M, T
>:rowlength().

5.3.2.8 template<int M, typename T> void Go::GoGenericGrid< M, T >:fillValue
(T value) [inline]

This function sets all values in the grid equal to the argument.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

22 Multivariate Splines Class Documentation

Parameters:
value The value to initialize the grid with.

Definition at line 59 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::size().

5.3.2.9 template<int M, typename T> int Go::GoGenericGrid< M, T
>::findPosition (const int xconst pos) const [inline]

Finds the memory position of an indexed element, given as an offset from the start of the internal
storage range, as accessed by getDataPointer()(p.23).

Finds the memory position of an indexed element, given as an offset from the start of the internal
storage range, as accessed by getDataPointer()(p. 23).

Parameters:
pos pointer to an M-sized array of integers, specifying the multiindex of the requested element

Returns:
the position of the stored element, as an offset from the start of the internal storage range
(the latter can be obtained by calling the function getDataPointer()(p.23))

Definition at line 536 of file GoGenericGrid.h.

Referenced by Go::GoLeastSquareApproximator< M, T >::approximate(), Go::GoGenericGrid<
M, T >:flipDirection(), Go::GoGenericGrid< M, T >::operator|[](), and Go::GoGenericGrid< M,
T >:permuteElements memOpt().

5.3.2.10 template<int M, typename T> void Go::GoGenericGrid< M, T
>::flipDirection (int dir) [inline]

Reverses the ordering of elements in the grid for a given index.

Reverses the ordering of elements in the grid for the index ’dir’. To ’reverse’ a direction means
that (supposing that N = rowlength(dir)) the element with positioned at i for the ’dir’ index will
now be positioned at N -1 - 1.

Parameters:
dir the index that we want to reverse. Must be between 0 and M-1.

Definition at line 559 of file GoGenericGrid.h.

References Go:GoGenericGrid< M, T >:findPosition(), and Go::GoGenericGrid< M, T
>zrowlength().

5.3.2.11 template<int M, typename T> const Tx const Go::GoGenericGrid< M, T
>::getDataPointer () const [inline]

Return a const pointer to the start of the memory range where elements are stored.

Returns:
const pointer to start of element storage memory range. Elements in this are stored by their
indexes fortran-style, which means that the first index has the lowest stride. (Ex. in a 2-
indexed array of shape (I, J), element e(i,j) is immediately followed by element e(i+1, j) as
long as i+1 < I. Element e(I-1, j) is followed by e(0, j+1)).

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.3 Go::GoGenericGrid< M, T > Class Template Reference 23

Definition at line 464 of file GoGenericGrid.h.

5.3.2.12 template<int M, typename T> Tx Go::GoGenericGrid< M, T
>::getDataPointer () [inline]

Return a pointer to the start of the memory range where elements are stored.

Returns:
pointer to start of element storage memory range. Elements in this are stored by their indexes
fortran-style, which means that the first index has the lowest stride. (Ex. in a 2-indexed array
of shape (I, J), element e(i,j) is immediately followed by element e(i+1, j) as long as i+1 < L.
Element e(I-1, j) is followed by e(0, j+1)).

Definition at line 451 of file GoGenericGrid.h.

Referenced by Go:GoSchoenbergApproximator< M, T >:approximate(), Go::GoLeast-
SquareApproximator< M, T >:approximate(), Go:GoKnotremovalApproximator< M, T
>::approximate(), Go:GoHybridApproximator< M, T >:approximate(), Go::GoGenericGrid<
M, T >:clone(), Go::GoGenericGrid< M, T >:operator *=(), Go:GoGenericGrid< M, T
>::operator+=(), and Go::GoGenericGrid< M, T >::operator-=().

5.3.2.13 template<int M, typename T> T Go::GoGenericGrid< M, T >::maxElem
() const [inline]

Returns the maximum element in the grid.

Returns:
the maximum element in the grid

Definition at line 328 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::size().

5.3.2.14 template<int M, typename T> T Go::GoGenericGrid< M, T >::minElem
() const [inline]

Returns the minimum element in the grid.

Returns:
the minimum element in the grid

Definition at line 347 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::size().

5.3.2.15 template<int M, typename T> void Go::GoGenericGrid< M, T
>::operator *= (const T & wval) [inline]
Multiply each of the elements in the grid by a value.

Each of the elements in the grid are multiplied with the value ’val’. A compile-time error will
occur if the type T does not define a multiplication operator.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

24 Multivariate Splines Class Documentation

Parameters:
val the value that each of the elements in the grid will be multiplied with

Definition at line 518 of file GoGenericGrid.h.

References Go:GoGenericGrid< M, T >:getDataPointer(), and Go:GoGenericGrid< M, T
> ::size().

5.3.2.16 template<int M, typename T> void Go::GoGenericGrid< M, T
>::operator+= (const GoGenericGrid< M, T > & rhs) [inlinel
Adds the elements of another grid to ’this’ grid, element by element.

The elements of the 'rhs’ grid are added to those of ’this’ grid, element by element. The grids
must have the same shape, or a runtime error will be thrown. A compile-time error will occur if
the type T does not define the addition operation.

Parameters:
rhs a grid to "add" to ’this’ grid, element by element

Definition at line 476 of file GoGenericGrid.h.

References Go::GoGenericGrid< M, T >:getDataPointer(), Go:GoGenericGrid< M, T
>:rowlength(), and Go:GoGenericGrid< M, T >::size().

5.3.2.17 template<int M, typename T> void Go::GoGenericGrid< M, T
>::operator-= (const GoGenericGrid< M, T > & rhs) [inline]
Subtracts the elements of another grid from ’this’ grid, element by element.

The elements of the ’rhs’ grid are added to those of ’this’ grid, element by element. The grids
must have the same shape, or a runtime error will be thrown. A compile-time error will occur if
the type T does not define the subtraction operation.

Parameters:
rhs a grid to "subtract" from ’this’ grid, element by element

Definition at line 497 of file GoGenericGrid.h.

References Go::GoGenericGrid< M, T >:getDataPointer(), Go:GoGenericGrid< M, T
>:rowlength(), and Go:GoGenericGrid< M, T >::size().

5.3.2.18 template<int M, typename T> const T& Go::GoGenericGrid< M, T
>::operator|] (const int xconst coords) const [inline]

Returns a const reference to a specified element in the array.

The element returned is the one having the indexes given as argument.

Parameters:

coords pointer to an M-sized range of integers, representing the indexes for the requested
element.

Returns:
a const reference to the element requested

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.3 Go::GoGenericGrid< M, T > Class Template Reference 25

Definition at line 436 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::findPosition().

5.3.2.19 template<int M, typename T> T& Go::GoGenericGrid< M, T
>::operator|] (const int xconst coords) [inline]

Returns a reference to a specified element in the array.

The element returned is the one having the indexes given as argument.

Parameters:

coords pointer to an M-sized range of integers, representing the indexes for the requested
element.

Returns:
a reference to the element requested

Definition at line 423 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::findPosition().

Referenced by Go::GoGenericGrid< M, T >::blockRead(), and Go::GoGenericGrid< M, T >:fll-
Value().

5.3.2.20 template<int M, typename T> void Go::GoGenericGrid< M, T
>::permuteElements (const int « permutation) [inlinel

Re-arranges the orders of the indexes to elements in the grid.

Permutes the order of the indexes to elements in the grid. The permutation is specified by the
argument, which is a pointer to an array of M integers that should be a permutation of the numbers
0...M-1. (if this is not the case, an exception will be thrown in DEBUG mode). The integer at
permutation[k] tells which position the k’th index (as specified by the ’this’ grid, will have after
the permutation.

Example: In a 3-indexed grid (i, j, k) we call permuteElements with the argument pointing to
the integer range [0, 2, 1]. This means that the new indexation of the grid will be [i, k, j].

Definition at line 628 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::clone(), and Go::GoGenericGrid< M, T >::size().
Referenced by Go::GoGenericGrid< M, T >::cyclicPermute().

5.3.2.21 template<int M, typename T> void Go::GoGenericGrid< M, T
>:upermuteElements memOpt (int * permutation) [inline]

Does the same as permuteElements()(p. 25), but using much less memory.

Does the same as permuteElements()(p.25), but use much less extra memory to do so. The
usual permuteElements()(p.25) function needs extra memory equivalent to the total storage
size of the grid to be permuted, while this function only uses about 1/64 of that size. However, the
function can be much slower (measured to about 50% to 100% slower) than its memory-hungry
equivalent. NB: This function has not been well tested, and may contain bugs!

Parameters:
permutation read explanation for permuteElements()(p. 25)

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

26 Multivariate Splines Class Documentation

Definition at line 690 of file GoGenericGrid.h.

References Go:GoGenericGrid< M, T >:findPosition(), Go:GoGenericGrid< M, T
>:rowlength(), and Go:GoGenericGrid< M, T >::size().

5.3.2.22 template<int M, typename T> void Go::GoGenericGrid< M, T
>uread ASCII (std::istream & 4s) [inline]
Reads a grid from a stream, using the ASCII format.

First the shape (length of each tensor direction) is read. Then the data are read from the stream
into the memory block pointed to by the grid. Enough data is read to fill the whole volume of the
grid.

Parameters:
18 the stream from which to read the data

Definition at line 125 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >:resize(), and Go::GoGenericGrid< M, T >::size().

5.3.2.23 template<int M, typename T> void Go::GoGenericGrid< M, T
>uread BINARY (std::istream & is) [inline]

Reads the grid from a stream, using BINARY format.

Same function as read ASCII()(p.26), but uses binary data instead of ASCIL.

Parameters:
28 the stream from which to read the data

Definition at line 171 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >:resize(), and Go::GoGenericGrid< M, T >::size().

5.3.2.24 template<int M, typename T> virtual int Go::GoGenericGrid< M, T
>uresize (const int xconst new_size) [inline, virtual]

Redefining the shape of the grid (number of elements in each index).

Each index’s number of elements is set to the corresponding number in the array pointed to by

the argument.

Parameters:
new _ size points to an array of M integers, specifying the number of elements in each index
of the grid.

Returns:
the new total number of elements of the grid

Reimplemented in Go::GoSelfcontainedGrid< M, T > (p. 50).

Definition at line 369 of file GoGenericGrid.h.

Referenced by Go::GoSchoenbergApproximator< M, T >:approximate(), Go::GoLeast-
SquareApproximator< M, T >:approximate(), Go::GoKnotremovalApproximator< M, T

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.3 Go::GoGenericGrid< M, T > Class Template Reference 27

>::approximate(), Go:GoHybridApproximator< M, T >::approximate(), Go::GoGenericGrid<
M, T >::clone(), Go::GoGenericGrid< M, T >:read ASCIIL(), and Go::GoGenericGrid< M, T
>uread BINARY().

5.3.2.25 template<int M, typename T> int Go::GoGenericGrid< M, T
>:urowlength (int ¢) const [inline]

Returns the number of elements along index 3.

Returns:
the number of elements along index i

Definition at line 409 of file GoGenericGrid.h.

5.3.2.26 template<int M, typename T> const intx const Go::GoGenericGrid< M,
T >:irowlength () const [inline]

Returns a pointer to the memory area specifying the shape of the grid.

By the shape of the grid, we mean the number of elements in each of the M indexes. This is stored
in an array of M integers, which can be accessed by the pointer returned from this function.

Returns:
the above mentioned pointer

Definition at line 400 of file GoGenericGrid.h.

Referenced by Go::GoSchoenbergApproximator< M, T >:approximate(), Go::GoNeutral-
Approximator< M, T >:uapproximate(), Go::GoLeastSquareApproximator< M, T
>::approximate(), Go::GoKnotremovalApproximator< M, T >:approximate(), Go:Go-
HybridApproximator< M, T >:approximate(), Go::GoGenericGrid< M, T >:blockRead(),
Go::GoGenericGrid< M, T >:fillValue(), Go::GoGenericGrid< M, T >:flipDirection(),
Go::GoGenericGrid< M, T >:operator+=(), Go::GoGenericGrid< M, T >:operator-=(),
Go::GoGenericGrid< M, T >::permuteElements memOpt(), and Go::GoBorrowedMVGrid< M,
T >::subgrid().

5.3.2.27 template<int M, typename T> int Go::GoGenericGrid< M, T >:usize ()
const [inline]

Returns the total number of elements in the grid.

Returns:
the total number of elements in the grid

Definition at line 315 of file GoGenericGrid.h.

Referenced by Go::GoSchoenbergApproximator< M, T >:approximate(), Go::GoLeast-
SquareApproximator< M, T >:approximate(), Go::GoKnotremovalApproximator< M, T
>::approximate(), Go:GoHybridApproximator< M, T >:approximate(), Go::GoGenericGrid<
M, T >:datacopy(), Go::GoGenericGrid< M, T >::dumpCoefs(), Go::GoGenericGrid< M, T
>::dumpCoefs binary(), Go::GoGenericGrid< M, T >:fillValue(), Go::GoGenericGrid< M, T
>:maxElem(), Go::GoGenericGrid< M, T >:minElem(), Go::GoGenericGrid< M, T >::operator

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

28 Multivariate Splines Class Documentation

*=(), Go::GoGenericGrid< M, T >:operator+=(), Go::GoGenericGrid< M, T >:operator-
=(), Go::GoGenericGrid< M, T >::permuteElements(), Go::GoGenericGrid< M, T >::permute-
Elements memOpt(), Go::GoGenericGrid< M, T >:read ASCII(), and Go::GoGenericGrid< M,
T >:read BINARY().

5.3.2.28 template<int M, typename T> void Go::GoGenericGrid< M, T
>:uwrite ASCII (std::ostream & o0s) const [inlinel
Writes the grid to a stream, using the ASCII format.

First the shape (length of each tensor direction) is written to the stream. Then an amount of data
equal to the volume of the grid is dumped from the memory block pointed to by the grid, onto
the stream.

Parameters:
0s the stream to write the data to

Definition at line 152 of file GoGenericGrid.h.
References Go::GoGenericGrid< M, T >::dumpCoefs().

5.3.2.29 template<int M, typename T> void Go::GoGenericGrid< M, T
>uwrite BINARY (std::ostream & o0s) const [inline]

Writes the grid to a stream, using the BINARY format.
Same function as write ASCII()(p. 28), but uses binary data instead of ASCII.

Parameters:
0s the stream to write the data to

Definition at line 201 of file GoGenericGrid.h.
References Go:GoGenericGrid< M, T >:dumpCoefs_binary().

The documentation for this class was generated from the following file:

o GoGenericGrid.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.4 Go::GoHybridApproximator< M, T > Class Template Reference 29

5.4 Go::GoHybridApproximator< M, T > Class Template
Reference

Fits the spline to a set of sample values, using a scheme that minimizes the 12- norm of the error
under certain, monotonity-preserving constraints on the control points.

#include <GoHybridApproximator.h>
Inheritance diagram for Go::GoHybridApproximator< M, T >::

| Go::GoApproximator< M, T > |

T

| Go::GoHybridApproximator< M, T > |

Public Member Functions

¢ GoHybridApproximator (int resolution, int order, T rigidity, T equality threshold, T
epsilon)

e virtual void approximate (GoBorrowedMVGrid< M, T > xorig_ data_array, Go-
BorrowedMVGrid< M, T > xcyclically permuted result array, BsplineBasis &basis)

A call to this function invokes the approzimation algorithm encapsulated in this class on a set
of gridded sample data.

e virtual int approximationSize () const

The size of the approrimation (measured in number of control points) is equal to the number of
control points that the user gave as input to the constructor for this object.

5.4.1 Detailed Description
template<int M, typename T> class Go::GoHybridApproximator< M, T >

Fits the spline to a set of sample values, using a scheme that minimizes the 12- norm of the error
under certain, monotonity-preserving constraints on the control points.

The method uses ideas from both least square minimization and variation diminishing splines,
and could be seen as a hybrid between the two. It tries to combine the accuracy obtained with
least squares with the variation diminishing property. The method is entirely developed during
the DINVIS project, and is described more thoroughly in the file hybridscheme. pdf

Definition at line 119 of file GoHybridApproximator.h.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

30 Multivariate Splines Class Documentation

5.4.2 Constructor & Destructor Documentation

5.4.2.1 template<int M, typename T> Go::GoHybridApproximator< M, T
>::GoHybrid Approximator (int resolution, int order, T rigidity, T
equality threshold, T epsilon)

Parameters:
resolution number of control points in the resulting spline (degrees of freedom in the fitting
process).

order order of the spline to be generated

rigidity factor that determines how much "spline rigidity" to mix into the equation. Higher
values of this factor will result in a smoother spline with less oscillations. Lower values
of this factor will result in a more accurate approximation.

equality threshold parameter defining how big the difference of two successive sample point
values need to have in order not to be defined as equal

epstlon a very small number, used to check when to end the internal optimizing loop.

Definition at line 167 of file GoHybridApproximator.h.

5.4.3 Member Function Documentation

5.4.3.1 template<int M, typename T> void Go::GoHybridApproximator< M,
T >::approximate (GoBorrowedMVGrid< M, T > * orig_data_array,
GoBorrowedMVGrid< M, T > x cyclically permuted result array,
BsplineBasis & basis) [virtuall

A call to this function invokes the approximation algorithm encapsulated in this class on a set of
gridded sample data.

All necessary parameters or modifiers to the encapsulated approximation algorithm should already
have been set by the class’ constructor or other methods. The sampled data is given in the form
of an M-indexed grid. The approximation takes place along the index with the longest stride (the
last index). In other words, if we have M indexes (0..M-1) and index m counts L., elements,
then we would consider the dataset a collection of Lj;_; datapoints, where each datapoint has
D= Piz;ng components. The result is then a univariate spline with control points in R” and a
basis B. The resulting spline’s coefficients is written to the grid pointed to by the second argument.
It will be cyclically permuted by one step (see GoGenericGrid::cyclicPermute()(p. 20)) com-
pared to the dataset, which allows us to use it as input for the approximate()(p.30) function of
the GoApproximator(p.11) object that is to be applied on the next parameter. The generated
basis will be returned in the last argument. The philosophy is that, for an M-variate dataset, apply-
ing the approximate()(p. 30) function M times (usually by M different GoApproximator(p.11)
objects), the first time on the sample data itself, later on the result from the last call of the ap-
proximate()(p. 30) function, then the resulting coefficient grid will be the control points for an
M-variate spline approximating the original dataset. (We have to take care of the basis functions
at each call too, in order to have a complete definition of the spline).

Note:
In practice, all this is taken care of by the GoTensorProductSpline::fit()(p.59) function,
so the only thing the user should usually be concerned about is the construction and definition
of the desired approximator objects.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.4 Go::GoHybridApproximator< M, T > Class Template Reference 31

Parameters:
orig_data_ array pointer to the gridded data that we want to ’fit’ the spline to. The fitting
will take place along the index with the longest stride, which is the last one.

cyclically permuted result array Pointer to resulting spline’s coefficient grid (to be
filled out by the algorithm). It will be cyclically permuted (see GoGenericGrid::cyclic-
Permute()(p. 20)) by one step.

basis the spline basis resulting from this approximation.

Implements Go::GoApproximator< M, T > (p.12).
Definition at line 203 of file GoHybridApproximator.h.

References Go::GoGenericGrid< M, T >:getDataPointer(), Go::GoGenericGrid< M, T
>:uresize(), Go:GoGenericGrid< M, T >:rowlength(), and Go::GoGenericGrid< M, T >::size().

5.4.3.2 template<int M, typename T> int Go::GoHybridApproximator< M, T
>::approximationSize () const [virtual]

The size of the approximation (measured in number of control points) is equal to the number of
control points that the user gave as input to the constructor for this object.

Returns:
The number of control points in the resulting spline after approximation

Implements Go::GoApproximator< M, T > (p.13).
Definition at line 192 of file GoHybridApproximator.h.

The documentation for this class was generated from the following file:

o GoHybridApproximator.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

32 Multivariate Splines Class Documentation

5.5 Go::GoKnotremovalApproximator< M, T > Class Tem-
plate Reference

Fits the spline to a set of sample values, using the knot removal scheme (Lyche/Mgrken).
#include <GoKnotremovalApproximator.h>

Inheritance diagram for Go::GoKnotremovalApproximator< M, T >::

| Go::GoApproximator< M, T > |

T

| Go::GoKnotremoval Approximator< M, T > |

Public Member Functions

¢ GoKnotremovalApproximator (int order, T tolerance, T afctol, int fixed derivs)
e virtual void approximate (GoBorrowedMVGrid< M, T > xorig_data_array, Go-
BorrowedMVGrid< M, T > xcyclically permuted result array, BsplineBasis &basis)

A call to this function invokes the approzimation algorithm encapsulated in this class on a set
of gridded sample data.

e virtual int approximationSize () const

5.5.1 Detailed Description
template<int M, typename T> class Go::GoKnotremovalApproximator< M, T >

Fits the spline to a set of sample values, using the knot removal scheme (Lyche/Mgrken).

Definition at line 28 of file GoKnotremoval Approximator.h.

5.5.2 Constructor & Destructor Documentation

5.5.2.1 template<int M, typename T> Go::GoKnotremovalApproximator< M,
T >::GoKnotremovalApproximator (int order, T tolerance, T afctol, int
fized _derivs)

Parameters:
order the spline order of the approximation
tolerance a bound for the max error of the approximation as compared to the data input

afctol should be a number between 0 and 1, indicating how the tolerance is to be distributed
between the two data reduction stages inherent to the algorithm. (It is usually best to
keep it low, like 0.1).

fized derivs the number of derivatives that are not allowed to change on the boundaries of
the spline.

Definition at line 66 of file GoKnotremoval Approximator.h.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.5 Go::GoKnotremovalApproximator< M, T > Class Template Reference 33

5.5.3 Member Function Documentation

5.5.3.1 template<int M, typename T> void Go::GoKnotremovalApproximator<
M, T >::approximate (GoBorrowedMVGrid< M, T > orig_data_ array,
GoBorrowedMVGrid< M, T > * cyclically permuted result array,
BsplineBasis & basis) [virtuall

A call to this function invokes the approximation algorithm encapsulated in this class on a set of
gridded sample data.

All necessary parameters or modifiers to the encapsulated approximation algorithm should already
have been set by the class’ constructor or other methods. The sampled data is given in the form
of an M-indexed grid. The approximation takes place along the index with the longest stride (the
last index). In other words, if we have M indexes (0...M-1) and index m counts L,, elements,
then we would consider the dataset a collection of Lj;_; datapoints, where each datapoint has
D= Piz;ng components. The result is then a univariate spline with control points in R” and a
basis B. The resulting spline’s coefficients is written to the grid pointed to by the second argument.
It will be cyclically permuted by one step (see GoGenericGrid::cyclicPermute()(p. 20)) com-
pared to the dataset, which allows us to use it as input for the approximate()(p. 33) function of
the GoApproximator(p.11) object that is to be applied on the next parameter. The generated
basis will be returned in the last argument. The philosophy is that, for an M-variate dataset, apply-
ing the approximate()(p. 33) function M times (usually by M different GoApproximator(p.11)
objects), the first time on the sample data itself, later on the result from the last call of the ap-
proximate()(p. 33) function, then the resulting coefficient grid will be the control points for an
M-variate spline approximating the original dataset. (We have to take care of the basis functions
at each call too, in order to have a complete definition of the spline).

Note:
In practice, all this is taken care of by the GoTensorProductSpline::fit()(p. 59) function,
so the only thing the user should usually be concerned about is the construction and definition
of the desired approximator objects.

Parameters:
orig_data_ array pointer to the gridded data that we want to ’fit’ the spline to. The fitting
will take place along the index with the longest stride, which is the last one.
cyclically permuted result array Pointer to resulting spline’s coefficient grid (to be
filled out by the algorithm). It will be cyclically permuted (see GoGenericGrid::cyclic-
Permute()(p. 20)) by one step.

basis the spline basis resulting from this approximation.

Implements Go::GoApproximator< M, T > (p.12).
Definition at line 93 of file GoKnotremoval Approximator.h.

References Go::GoGenericGrid< M, T >::clone(), Go::GoGenericGrid< M, T >::cyclicPermute(),
Go:GoGenericGrid< M, T >:getDataPointer(), Go:GoGenericGrid< M, T >:resize(), Go::Go-
GenericGrid< M, T >:rowlength(), and Go::GoGenericGrid< M, T >::size().

5.5.3.2 template<int M, typename T> virtual int Go::GoKnotremoval-
Approximator< M, T >::approximationSize () const [inline,
virtuall

The size of the approximation cannot be predicted with the knotremoval algorithm, and this
function will therefore return a negative value (read the corresponding documentation on Go-
Approximator::approximationSize()(p. 13))

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

34 Multivariate Splines Class Documentation

Returns:
A negative value. Multiplied with the number of datapoints that we want to approximate,
we get an upper estimate on the number of resulting control points.

Implements Go::GoApproximator< M, T > (p.13).
Definition at line 51 of file GoKnotremoval Approximator.h.

The documentation for this class was generated from the following file:

¢ GoKnotremovalApproximator.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.6 Go::GoLeastSquareApproximator< M, T > Class Template Reference 35

5.6 Go::GoLeastSquareApproximator< M, T > Class Tem-
plate Reference

Fits the spline to a set of sample values, using least squares.
#include <GoLeastSquareApproximator.h>

Inheritance diagram for Go::GoLeastSquareApproximator< M, T >::

| Go::GoApproximator< M, T > |

T

| Go::GoLeastSquareApproximator< M, T > |

Public Member Functions

¢ GoLeastSquareApproximator (int resolution, int order, T rigidity)
e virtual void approximate (GoBorrowedMVGrid< M, T > xorig_data_array, Go-
BorrowedMVGrid< M, T > xcyclically permuted result array, BsplineBasis &basis)

A call to this function invokes the approrimation algorithm encapsulated in this class on a set
of gridded sample data.

e virtual int approximationSize () const

The size of the approrimation (measured in number of control points) is equal to the number of
control points that the user gave as input to the constructor for this object.

5.6.1 Detailed Description
template<int M, typename T> class Go::GoLeastSquareApproximator< M, T >

Fits the spline to a set of sample values, using least squares.

Definition at line 33 of file GoLeastSquareApproximator.h.

5.6.2 Constructor & Destructor Documentation

5.6.2.1 template<int M, typename T> Go::GoLeastSquareApproximator< M, T
>::GoLeastSquareApproximator (int resolution, int order, T rigidity)

Parameters:
resolution number of control points in the resulting spline (degrees of freedom in the fitting
process).

order order of the spline to be generated

rigidity factor that determines how much "spline rigidity" to mix into the equation. Higher
values of this factor will result in a smoother spline with less oscillations. Lower values
of this factor will result in a more accurate approximation. The ’rigidity’ parameter
expresses the ratio of the frobenius norms of the smoothing matrix and of the system
matrix. A rigidity of 0 eliminates the smoothing matrix altogether.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

36 Multivariate Splines Class Documentation

Definition at line 71 of file GoLeastSquareApproximator.h.

5.6.3 Member Function Documentation

5.6.3.1 template<int M, typename T> void Go::GoLeastSquareApproximator< M,
T >::approximate (GoBorrowedMVGrid< M, T > * orig_data_array,
GoBorrowedMVGrid< M, T > x cyclically permuted result array,
BsplineBasis & basis) [virtuall

A call to this function invokes the approximation algorithm encapsulated in this class on a set of
gridded sample data.

All necessary parameters or modifiers to the encapsulated approximation algorithm should already
have been set by the class’ constructor or other methods. The sampled data is given in the form
of an M-indexed grid. The approximation takes place along the index with the longest stride (the
last index). In other words, if we have M indexes (0..M-1) and index m counts L,, elements,
then we would consider the dataset a collection of Lj;_; datapoints, where each datapoint has
D= Piz;ng components. The result is then a univariate spline with control points in R” and a
basis B. The resulting spline’s coefficients is written to the grid pointed to by the second argument.
It will be cyclically permuted by one step (see GoGenericGrid::cyclicPermute()(p.20)) com-
pared to the dataset, which allows us to use it as input for the approximate()(p.36) function of
the GoApproximator(p.11) object that is to be applied on the next parameter. The generated
basis will be returned in the last argument. The philosophy is that, for an M-variate dataset, apply-
ing the approximate()(p. 36) function M times (usually by M different GoApproximator(p.11)
objects), the first time on the sample data itself, later on the result from the last call of the ap-
proximate()(p. 36) function, then the resulting coefficient grid will be the control points for an
M-variate spline approximating the original dataset. (We have to take care of the basis functions
at each call too, in order to have a complete definition of the spline).

Note:
In practice, all this is taken care of by the GoTensorProductSpline::fit()(p. 59) function,
so the only thing the user should usually be concerned about is the construction and definition
of the desired approximator objects.

Parameters:
orig _data_ array pointer to the gridded data that we want to ’fit’ the spline to. The fitting
will take place along the index with the longest stride, which is the last one.

cyclically permuted result array Pointer to resulting spline’s coefficient grid (to be
filled out by the algorithm). It will be cyclically permuted (see GoGenericGrid::cyclic-
Permute()(p. 20)) by one step.

basis the spline basis resulting from this approximation.

Implements Go::GoApproximator< M, T > (p.12).
Definition at line 86 of file GoLeastSquareApproximator.h.

References Go::GoGenericGrid< M, T >:findPosition(), Go::GoGenericGrid< M, T >::getData-
Pointer(), Go::GoGenericGrid< M, T >:resize(), Go::GoGenericGrid< M, T >::rowlength(), and
Go:GoGenericGrid< M, T >::size().

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.6 Go::GoLeastSquareApproximator< M, T > Class Template Reference 37

5.6.3.2 template<int M, typename T> virtual int Go::GoLeastSquare-
Approximator< M, T >::approximationSize () const [inline,
virtuall

The size of the approximation (measured in number of control points) is equal to the number of
control points that the user gave as input to the constructor for this object.

Returns:
The number of control points in the resulting spline after approximation

Implements Go::GoApproximator< M, T > (p.13).
Definition at line 57 of file GoLeastSquareApproximator.h.

The documentation for this class was generated from the following file:

e GoLeastSquareApproximator.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

38 Multivariate Splines Class Documentation

5.7 Go::GoNeutralApproximator< M, T > Class Template
Reference

This approximator is "neutral".
#include <GoNeutralApproximator.h>

Inheritance diagram for Go::GoNeutralApproximator< M, T >::

| Go::GoApproximator< M, T > |

T

| Go::GoNeutral Approximator< M, T > |

Public Member Functions

e virtual void approximate (GoBorrowedMVGrid< M, T > =xorig_data_ array, Go-
BorrowedMVGrid< M, T > xcyclically permuted result array, BsplineBasis &basis)

A call to this function invokes the approzimation algorithm encapsulated in this class on a set
of gridded sample data.

e virtual int approximationSize () const

5.7.1 Detailed Description
template<int M, typename T> class Go::GoNeutralApproximator< M, T >

This approximator is "neutral”.

That means that the resulting control point grid doesn’t differ from the raw data in any way
(except for being cyclically permuted by one step, according to the specification of the Go-
Approxmator::approximate() function. Each point of the raw data is seen as a control point
for a piecewise constant spline, so that the data keeps its original character even though repre-
sented by a spline. This class can be used in for the GoTensorProductSpline(p.51) class to
"fill in" approximators for those parameters where the user does not want any altering of the data.

Definition at line 41 of file GoNeutral Approximator.h.

5.7.2 Member Function Documentation

5.7.2.1 template<int M, typename T> void Go::GoNeutralApproximator< M,
T >::approximate (GoBorrowedMVGrid< M, T > x orig_data_array,
GoBorrowedMVGrid< M, T > x cyclically permuted result array,
BsplineBasis & basis) [virtuall

A call to this function invokes the approximation algorithm encapsulated in this class on a set of
gridded sample data.

All necessary parameters or modifiers to the encapsulated approximation algorithm should already
have been set by the class’ constructor or other methods. The sampled data is given in the form
of an M-indexed grid. The approximation takes place along the index with the longest stride (the

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.7 Go::GoNeutral Approximator< M, T > Class Template Reference 39

last index). In other words, if we have M indexes (0..M-1) and index m counts L., elements,
then we would consider the dataset a collection of L,;_; datapoints, where each datapoint has
D= Piz;ng components. The result is then a univariate spline with control points in R” and a
basis B. The resulting spline’s coefficients is written to the grid pointed to by the second argument.
It will be cyclically permuted by one step (see GoGenericGrid::cyclicPermute()(p. 20)) com-
pared to the dataset, which allows us to use it as input for the approximate()(p.38) function of
the GoApproximator(p.11) object that is to be applied on the next parameter. The generated
basis will be returned in the last argument. The philosophy is that, for an M-variate dataset, apply-
ing the approximate()(p. 38) function M times (usually by M different GoApproximator(p.11)
objects), the first time on the sample data itself, later on the result from the last call of the ap-
proximate() (p. 38) function, then the resulting coefficient grid will be the control points for an
M-variate spline approximating the original dataset. (We have to take care of the basis functions
at each call too, in order to have a complete definition of the spline).

Note:
In practice, all this is taken care of by the GoTensorProductSpline::fit()(p. 59) function,
so the only thing the user should usually be concerned about is the construction and definition
of the desired approximator objects.

Parameters:
orig_data_ array pointer to the gridded data that we want to ’fit’ the spline to. The fitting
will take place along the index with the longest stride, which is the last one.

cyclically permuted result array Pointer to resulting spline’s coefficient grid (to be
filled out by the algorithm). It will be cyclically permuted (see GoGenericGrid::cyclic-
Permute()(p. 20)) by one step.

basis the spline basis resulting from this approximation.

Implements Go::GoApproximator< M, T > (p.12).
Definition at line 71 of file GoNeutralApproximator.h.

References Go::GoGenericGrid< M, T >:clone(), Go::GoGenericGrid< M, T >::cyclicPermute(),
and Go::GoGenericGrid< M, T >:rowlength().

5.7.2.2 template<int M, typename T> virtual int Go::GoNeutralApproximator<
M, T >::approximationSize () const [inline, virtuall

With this class, the result does not differ from the input data, except from the
cyclic permutation that always takes place (according to the specification of the Go-
Approximator::approximate()(p.12) function). The size is thus dependent (and equal
to) the size of the input data. Therefore, in accordance with the specification of Go-
Approximator::approximationSize()(p. 13), this function always returns -1.

Returns:
-1 (read GoApproximator::approximationSize()(p. 13) to understand why)

Implements Go::GoApproximator< M, T > (p.13).
Definition at line 59 of file GoNeutral Approximator.h.

The documentation for this class was generated from the following file:

e GoNeutral Approximator.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

40 Multivariate Splines Class Documentation

5.8 Go::GoScalableGrid< T > Class Template Reference

A multiindexed grid whose number of indexes can be changed at runtime.

#include <GoScalableGrid.h>

Public Member Functions

¢ GoScalableGrid ()

Default constructor making a grid with no indezes and no size.

e GoScalableGrid (int num _dims, int *rowlengths)

Constructor creating a grid with a certain shape.

e void reshape (int num_ dims, const int *xrowlengths, T fill value)

Change the shape of the grid and fills it with a specified value.

e void reshape (int num_ dims, const int *xrowlengths)

Change the shape of the grid, and fills it with an unspecified value.

¢ int numDims () const

Return the current number of indezes in the grid.

e int rowlength (int dim) const

e const int xconst rowlength () const

Return a const pointer to the memory area specifying the shape of the grid.

e const T * getDataPointer () const

Return a pointer to the element storage memory area owned and used by the grid.

e void clone (Go::GoScalableGrid< T > &newgrid) const
Makes the argument grid a copy of itself.

e T & operator[] (const int *const coords)

Returns a reference to a specified element in the array.

e const T & operator|] (const int *const coords) const

Returns a const reference to a specified element in the array.

e int size () const

Returns the total number of elements in the grid.

e void permuteElements (const int *permutation)

Re-arranges the orders of the indezes to elements in the grid.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.8 Go::GoScalableGrid< T > Class Template Reference 41

5.8.1 Detailed Description
template<typename T> class Go::GoScalableGrid< T >

A multiindexed grid whose number of indexes can be changed at runtime.

It owns the memory area where elements are stored, which makes copying expensive but memory
management easier.

Definition at line 30 of file GoScalableGrid.h.

5.8.2 Constructor & Destructor Documentation

5.8.2.1 template<typename T> Go::GoScalableGrid< T >::GoScalableGrid ()
[inline]
Default constructor making a grid with no indexes and no size.

Even though it is not immediately useful, it can later be reshaped or assigned into.

Definition at line 38 of file GoScalableGrid.h.

5.8.2.2 template<typename T> Go::GoScalableGrid< T >::GoScalableGrid (int
num_ dims, int x rowlengths) [inline]

Constructor creating a grid with a certain shape.

Parameters:
num__ dims number of indexes for the multiindexed grid

rowlengths points to an array of integers. The array must have 'mum dims’ elements,
specifying the lengths of each index of the multiindexed grid to be created.

Definition at line 47 of file GoScalableGrid.h.
References Go:GoScalableGrid< T >::reshape().

5.8.3 Member Function Documentation

5.8.3.1 template<typename T> void Go::GoScalableGrid< T >::clone
(Go::GoScalableGrid< T > & newgrid) const [inline]

Makes the argument grid a copy of itself.

Parameters:
newgrid the grid which will become a copy of the ’this’ grid

Definition at line 141 of file GoScalableGrid.h.

References Go::GoScalableGrid< T >::getDataPointer(), Go::GoScalableGrid< T >::numDims(),
Go:GoScalableGrid< T >:ureshape(), Go:GoScalableGrid< T >:rowlength(), and Go::Go-
ScalableGrid< T >::size().

Referenced by Go::GoScalableGrid< T >::permuteElements().

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

42 Multivariate Splines Class Documentation

5.8.3.2 template<typename T> const Tx Go::GoScalableGrid< T
>::getDataPointer () const [inlinel

Return a pointer to the element storage memory area owned and used by the grid.

Returns:
a pointer to the element storage memory area used by the grid

Definition at line 127 of file GoScalableGrid.h.
Referenced by Go::GoScalableGrid< T >::clone().

5.8.3.3 template<typename T> int Go::GoScalableGrid< T >::numDims () const
[inline]

Return the current number of indexes in the grid.

Returns:
the current number of indexes in the grid
Definition at line 88 of file GoScalableGrid.h.

Referenced by Go::GoScalableGrid< T >::clone(), Go::GoScalableGrid< T >::permuteElements(),
and Go::GoScalableGrid< T >::rowlength().

5.8.3.4 template<typename T> const T& Go::GoScalableGrid< T >::operator|]
(const int *xconst coords) const [inline]

Returns a const reference to a specified element in the array.

The element returned is the one having the indexes given as argument.

Parameters:
coords pointer to an M-sized range of integers, representing the indexes for the requested
element.

Returns:
a const reference to the element requested

Definition at line 171 of file GoScalableGrid.h.

5.8.3.5 template<typename T> T& Go::GoScalableGrid< T >::operator|] (const
int *const coords) [inline]

Returns a reference to a specified element in the array.

The element returned is the one having the indexes given as argument.

Parameters:
coords pointer to an M-sized range of integers, representing the indexes for the requested
element.

Returns:
a reference to the element requested

Definition at line 157 of file GoScalableGrid.h.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.8 Go::GoScalableGrid< T > Class Template Reference 43

5.8.3.6 template<typename T> void Go::GoScalableGrid< T >::permuteElements
(const int * permutation) [inline]

Re-arranges the orders of the indexes to elements in the grid.

Permutes the order of the indexes to elements in the grid. The permutation is specified by the
argument, which is a pointer to an array of M integers that should be a permutation of the numbers
0..M-1. (if this is not the case, an exception will be thrown in DEBUG mode). The integer at
permutation[k] tells which position the k’th index (as specified by the ’this’ grid, will have after
the permutation.

Example: In a 3-indexed grid (i, j, k) we call permuteElements with the argument pointing to
the integer range [0, 2, 1]. This means that the new indexation of the grid will be [i, k, j].

Definition at line 204 of file GoScalableGrid.h.

References Go::GoScalableGrid< T >:clone(), Go:GoScalableGrid< T >:numDims(), and
Go::GoScalableGrid< T >::size().

5.8.3.7 template<typename T> void Go::GoScalableGrid< T >::reshape (int
num__ dims, const int * rowlengths) [inline]

Change the shape of the grid, and fills it with an unspecified value.

Parameters:
num__ dims specifies how many indexes the multiindexed grid should have

rowlengths should point to an array of 'num_dims’ integers, specifying the lengths of each
index of the multiindexed grid

Definition at line 79 of file GoScalableGrid.h.
References Go::GoScalableGrid< T >::reshape().

5.8.3.8 template<typename T> void Go::GoScalableGrid< T >::reshape (int
num__ dims, const int * rowlengths, T fill value) [inline]

Change the shape of the grid and fills it with a specified value.

Parameters:
num__ dims specifies how many indexes the multiindexed grid should have

rowlengths should point to an array of 'num_dims’ integers, specifying the lengths of each
index of the multiindexed grid

fill_wvalue the value to fill the all elements of the grid with after reshaping it

Definition at line 59 of file GoScalableGrid.h.

Referenced by Go:GoScalableGrid< T >::clone(), Go::GoScalableGrid< T >:GoScalableGrid(),
and Go::GoScalableGrid< T >::reshape().

5.8.3.9 template<typename T> const intx const Go::GoScalableGrid< T
>urowlength () const [inline]

Return a const pointer to the memory area specifying the shape of the grid.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

44 Multivariate Splines Class Documentation

The shape of the grid is internally defined as an array of integers. The array has a length equal
to the number of indices in the multiindexed grid, and each entry in the array defined the corre-
sponding length of that index. This function return a pointer to this array, so that the shape of
an unknown grid can be inspected from outside

Returns:
a pointer to the memory area specifying the shape of the grid

Definition at line 115 of file GoScalableGrid.h.
Referenced by Go::GoScalableGrid< T >::clone().

5.8.3.10 template<typename T> int Go::GoScalableGrid< T >::rowlength (int
dim) const [inline]

Return the length of an index

Parameters:
dim the index we want to know the length of

Returns:
the length of the specified index

Definition at line 98 of file GoScalableGrid.h.

References Go::GoScalableGrid< T >::numDims().

5.8.3.11 template<typename T> int Go::GoScalableGrid< T >::size () const
[inline]
Returns the total number of elements in the grid.
This number is obtained by multiplying together the lengths of all the indexes
Returns:
the total number of elements in the grid

Definition at line 183 of file GoScalableGrid.h.

Referenced by Go:GoScalableGrid< T >:clone(), and Go::GoScalableGrid< T >::permute-
Elements().

The documentation for this class was generated from the following file:

e GoScalableGrid.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.9 Go::GoSchoenbergApproximator< M, T > Class Template Reference 45

5.9 Go::GoSchoenbergApproximator< M, T > Class Tem-
plate Reference

#include <GoSchoenbergApproximator.h>

Inheritance diagram for Go::GoSchoenbergApproximator< M, T >::

| Go::GoApproximator< M, T > |

T

| Go::GoSchoenbergApproximator< M, T > |

Public Member Functions

¢ GoSchoenbergApproximator (int resolution, int order)

e virtual void approximate (GoBorrowedMVGrid< M, T > xorig_data_array, Go-
BorrowedMVGrid< M, T > xcyclically permuted result array, BsplineBasis &basis)

A call to this function invokes the approrimation algorithm encapsulated in this class on a set
of gridded sample data.

e virtual int approximationSize () const

The size of the approzimation (measured in number of control points) is equal to the number of
control points that the user gave as input to the constructor for this object.

5.9.1 Detailed Description
template<int M, typename T> class Go::GoSchoenbergApproximator< M, T >

Fits the spline to a set of sample values, using Schoenberg’s variation diminishing spline scheme.

Definition at line 42 of file GoSchoenbergApproximator.h.

5.9.2 Constructor & Destructor Documentation

5.9.2.1 template<int M, typename T> Go::GoSchoenbergApproximator< M, T
>::GoSchoenbergApproximator (int resolution, int order)

Parameters:
resolution number of control points in the resulting spline (degrees of freedom in the fitting
process).

order order of the spline to be generated

Definition at line 74 of file GoSchoenbergApproximator.h.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

46 Multivariate Splines Class Documentation

5.9.3 Member Function Documentation

5.9.3.1 template<int M, typename T> void Go::GoSchoenbergApproximator< M,
T >::approximate (GoBorrowedMVGrid< M, T > * orig_data_array,
GoBorrowedMVGrid< M, T > * cyclically permuted result array,
BsplineBasis & basis) [virtuall

A call to this function invokes the approximation algorithm encapsulated in this class on a set of
gridded sample data.

All necessary parameters or modifiers to the encapsulated approximation algorithm should already
have been set by the class’ constructor or other methods. The sampled data is given in the form
of an M-indexed grid. The approximation takes place along the index with the longest stride (the
last index). In other words, if we have M indexes (0...M-1) and index m counts L,, elements,
then we would consider the dataset a collection of Lj;_; datapoints, where each datapoint has
D= Piz;ng components. The result is then a univariate spline with control points in R” and a
basis B. The resulting spline’s coefficients is written to the grid pointed to by the second argument.
It will be cyclically permuted by one step (see GoGenericGrid::cyclicPermute()(p. 20)) com-
pared to the dataset, which allows us to use it as input for the approximate()(p.46) function of
the GoApproximator(p.11) object that is to be applied on the next parameter. The generated
basis will be returned in the last argument. The philosophy is that, for an M-variate dataset, apply-
ing the approximate()(p. 46) function M times (usually by M different GoApproximator(p.11)
objects), the first time on the sample data itself, later on the result from the last call of the ap-
proximate()(p. 46) function, then the resulting coefficient grid will be the control points for an
M-variate spline approximating the original dataset. (We have to take care of the basis functions
at each call too, in order to have a complete definition of the spline).

Note:
In practice, all this is taken care of by the GoTensorProductSpline::fit()(p. 59) function,
so the only thing the user should usually be concerned about is the construction and definition
of the desired approximator objects.

Parameters:
orig data_ array pointer to the gridded data that we want to ’fit’ the spline to. The fitting
will take place along the index with the longest stride, which is the last one.

cyclically permuted result array Pointer to resulting spline’s coefficient grid (to be
filled out by the algorithm). It will be cyclically permuted (see GoGenericGrid::cyclic-
Permute()(p. 20)) by one step.

basis the spline basis resulting from this approximation.

Implements Go::GoApproximator< M, T > (p.12).
Definition at line 88 of file GoSchoenbergApproximator.h.

References Go::GoGenericGrid< M, T >:getDataPointer(), Go::GoGenericGrid< M, T
>:uresize(), Go:GoGenericGrid< M, T >:rowlength(), and Go::GoGenericGrid< M, T >::size().

5.9.3.2 template<int M, typename T> virtual int Go::GoSchoenberg-
Approximator< M, T >::approximationSize () const [inline,
virtuall

The size of the approximation (measured in number of control points) is equal to the number of
control points that the user gave as input to the constructor for this object.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.9 Go::GoSchoenbergApproximator< M, T > Class Template Reference

47

Returns:
The number of control points in the resulting spline after approximation

Implements Go::GoApproximator< M, T > (p.13).
Definition at line 61 of file GoSchoenbergApproximator.h.

The documentation for this class was generated from the following file:

e GoSchoenbergApproximator.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

48 Multivariate Splines Class Documentation

5.10 Go::GoSelfcontainedGrid< M, T > Class Template Ref-
erence

This is a multiindexed grid that derives from GoGenericGrid(p.17). It owns its data, which
makes copying an expensive process.

#include <GoSelfcontainedGrid.h>

Inheritance diagram for Go::GoSelfcontainedGrid< M, T >::

| Go::GoGenericGrid< M, T > |

T

| Go::GoSelfcontainedGrid< M, T > |

Public Member Functions

¢ GoSelfcontainedGrid ()

Constructor making an empty, multiindezed grid with M indices, where each index is of length
zero.

e GoSelfcontainedGrid (const int *const rowlength)

Constructor making a multitndezed grid with M indices, where each indez has a specified length.

o GoSelfcontainedGrid (const GoSelfcontainedGrid &rhs)

Copy constructor (potentially expensive for large grids).

¢ GoSelfcontainedGrid & operator= (const GoSelfcontainedGrid &rhs)

Ezception-safe assignment operator (potentially expensive for large grids).

e virtual void swap (GoSelfcontainedGrid &rhs)
Rapidly swap two grid.

e virtual int resize (const int *const new_ size)

Redefining the shape of the grid (number of elements in each index).

e const GoBorrowedMVGrid< M, T > borrowedCopy () const

The grid returned can be considered a ’copy’ of this grid, but it shares the same element storage
area.

5.10.1 Detailed Description
template<int M, typename T> class Go::GoSelfcontainedGrid< M, T >

This is a multiindexed grid that derives from GoGenericGrid(p.17). It owns its data, which
makes copying an expensive process.

Definition at line 26 of file GoSelfcontainedGrid.h.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.10 Go::GoSelfcontainedGrid< M, T > Class Template Reference 49

5.10.2 Constructor & Destructor Documentation

5.10.2.1 template<int M, typename T> Go::GoSelfcontainedGrid< M, T
>::GoSelfcontainedGrid () [inline]

Constructor making an empty, multiindexed grid with M indices, where each index is of length
ZET0.

The created grid is immediately useless, since it has size 0. It can however be assigned to other
grids, resized, etc.

Definition at line 34 of file GoSelfcontainedGrid.h.

5.10.2.2 template<int M, typename T> Go::GoSelfcontainedGrid< M, T
>::GoSelfcontainedGrid (const int xconst rowlength) [inline]

Constructor making a multiindexed grid with M indices, where each index has a specified length.

Parameters:
rowlength pointer to an array of M integers specifying the length of the respective indexes
of the grid to be created
Definition at line 53 of file GoSelfcontainedGrid.h.
References Go:GoSelfcontainedGrid< M, T >:resize().

5.10.2.3 template<int M, typename T> Go::GoSelfcontainedGrid< M, T
>::GoSelfcontainedGrid (const GoSelfcontainedGrid< M, T > & rhs)
[inline]

Copy constructor (potentially expensive for large grids).

Parameters:
rhs grid to copy

Definition at line 64 of file GoSelfcontainedGrid.h.
References Go::GoGenericGrid< M, T >::clone().

5.10.3 Member Function Documentation

5.10.3.1 template<int M, typename T> const GoBorrowedMVGrid<M, T>
Go::GoSelfcontainedGrid< M, T >::borrowedCopy () const [inline]

The grid returned can be considered a ’copy’ of this grid, but it shares the same element storage
area.

The ownership of the element storage memory area remains within ’this’ grid, while the resulting
Go::GoBorrowedMVGrid<M, T> only points to the same memory.

Returns:
a grid with the same shape that uses the same memory storage area as ’this’ grid

Definition at line 132 of file GoSelfcontainedGrid.h.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

50 Multivariate Splines Class Documentation

5.10.3.2 template<int M, typename T> GoSelfcontainedGrid& Go::Go-
SelfcontainedGrid< M, T >::operator= (const GoSelfcontainedGrid< M,
T > & rhs) [inline]

Exception-safe assignment operator (potentially expensive for large grids).

Parameters:
rhs grid to copy

Definition at line 73 of file GoSelfcontainedGrid.h.
References Go::GoSelfcontainedGrid< M, T >::swap().

5.10.3.3 template<int M, typename T> virtual int Go::GoSelfcontainedGrid< M,
T >:uresize (const int xconst new size) [inline, virtuall

Redefining the shape of the grid (number of elements in each index).

Each index’s number of elements is set to the corresponding number in the array pointed to by

the argument.

Parameters:
new _ size points to an array of M integers, specifying the number of elements in each index
of the grid.

Returns:
the new total number of elements of the grid

Reimplemented from Go::GoGenericGrid< M, T > (p.26).
Definition at line 98 of file GoSelfcontainedGrid.h.
Referenced by Go::GoSelfcontainedGrid< M, T >::GoSelfcontainedGrid().

5.10.3.4 template<int M, typename T> virtual void Go::GoSelfcontainedGrid< M,
T >:swap (GoSelfcontainedGrid< M, T > & rhs) [inline, virtuall

Rapidly swap two grid.

Parameters:
rhs the grid to swap with

Definition at line 85 of file GoSelfcontainedGrid.h.
References Go::GoSelfcontainedGrid< M, T >::data_storage .
Referenced by Go::GoSelfcontainedGrid< M, T >::operator=().

The documentation for this class was generated from the following file:

o GoSelfcontainedGrid.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.11 Go::GoTensorProductSpline< M, T > Class Template Reference 51

5.11 Go::GoTensorProductSpline< M, T > Class Template
Reference

This is a template class that represent a multivariate spline with M parameters and coefficients
of type T.

#include <GoTensorProductSpline.h>

Public Member Functions

¢ GoTensorProductSpline ()

This constructor does not make a valid GoTensorProductSpline(p. 51) object.

¢ GoTensorProductSpline (T #storage area)

This constructor does not make a valid GoTensorProductSpline(p. 51) object.

¢ GoTensorProductSpline (const GoBorrowedMVGrid< M, T > &coefgrid, const int
xconst order, bool is_kreg)

Constructor that creates a tensor product B-spline whose coefficents is the M-dimensional grid
given as the first argument.

¢ GoTensorProductSpline (const GoBorrowedMVGrid< M, T > &coefs, const int
xconst order, const T xconst start param vals, const T xconst end param vals, bool
k reg)

Constructor that creates a tensor product B-spline whose coefficients is the M-dimensional grid
given as the first argument.

e GoTensorProductSpline (const GoBorrowedMVGrid< M, T > &coefs, const
std::vector< double > xknotvectors, const int *const order)

Constructor that creates a tensor product B-spline whose coefficients is the M-dimensional grid
given as the first arqument.

¢ GoTensorProductSpline (const GoTensorProductSpline< M, T > &rhs)

Copy constructor (weak - the new GoTensorProductSpline(p. 51) will share the same coeffi-
cient storage area as ’rhs’).

e void clone (GoTensorProductSpline< M, T > &rhs) const

Clones itself into the argument spline, who becomes a hard copy of ’this’ spline.

e void read ASCII (std::istream &is)
Read the object’s contents from an input stream as ASCII data.

o void write ASCII (std::ostream &os) const
Write the object’s contents to an output stream as ASCII data.

¢ void read BINARY (std::istream &is)
Read the object’s contents from an input stream as BINARY data.

e void write BINARY (std::ostream &os) const
Write the object’s contents to an output stream as BINARY data.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

52

Multivariate Splines Class Documentation

Array< T, 2 *M > paramspan () const

Returns an array containing the start and end parameter values.

T point (const double xconst params) const

Evaluate the spline for a certain choice of parameter values.

void setUniformKnotVector (int tensor dir, T start, T end, int order, bool is_kreg)

Redefines the basis for the specified parameter using a uniform knotvector and a given order.

void rescaleKnotVector (int tensor dir, T start_value, T end value)

Rescales the knotvector for the given parameter.

std::vector< double > getKnotVector (int tensor dir) const

Returns the knotvector corresponding to the specified parameter.

GoBorrowedMVGrid< M, T > coefficientGrid () const
Returns the coefficient grid.

void setDataPointer (T «p)

Sets the spline’s coefficient storage area to start at the memory address given by p’.

void evalSurf (int no_u, int no_ v, int par_dir_1, int par_dir_ 2, double start param 1,
double start param 2, double end param 1, double end param 2, bool reverse dir 1,
bool reverse dir 2, const double xconst fixed, T xres) const

Fast evaluation of a whole, bivariate surface on the spline.

int findRange (int par_dir, double value) const

For a given parameter, identifies the interval on the corresponding knotvector where the specified
parameter value s located.

GoTensorProductSpline< M-1, T > integrate (int dir, double *domain_start, double
«*domain_end, T xstorage area) const

Integrates the spline along a specified parameter, producing a spline with one parameter less.

GoTensorProductSpline< M-1, T > reduce (int dir, T param val, T xdata_area)
const

Making a spline with one less parameter from the original, obtained by fizing this parameter’s
value.

GoTensorProductSpline< M, T > extract (T xstorage area, int xknot_start indexes,
int *knot_end _indexes) const

Creates a new GoTensorProductSpline(p. 51) whose parameter domain is a subset of the
original spline.

void insertKnots (int dir, const std::vector< T > &new_knots)

Knot insertion in a given parameter.

void raiseOrderTo (int new_ order, int dir)

Raise the order of the basis for a specified parameter.

void evalVolume (std::pair< double *, double * > xsample points, T xres) const

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.11 Go::GoTensorProductSpline< M, T > Class Template Reference 53

Fast evaluation of the whole spline object for many parameter values.

e void evalVolume (int sresolutions, double xrange start, double *range end, T xres)
const

Fast evaluation of the whole spline object for many parameter values.

e void fullEvaluate (GoGenericGrid< M, T > &res) const

Fast evaluation of the whole spline object, at equidistant parameter values.

e void fit (const GoGenericGrid< M, T > &rawdata, Array< GoApproximator< M, T
> %, M > &methods, GoGenericGrid< M, T > &errors, bool calculate _errors=true)

Fit the spline to a grid of sample values, using a specified approrimation method.

e int size () const

Return the number of spline coefficients.

¢ int rowlength (int i) const

Return the number of coefficients for the specified parameter.

e int order (int i) const

Returns the order of the spline for a given parameter.

e const BsplineBasis & getBasis (int i) const

Returns the basis for a specified parameter.

¢ bool operator== (const GoTensorProductSpline< M, T > &rhs) const
Equality operator.

¢ void cyclicPermute (int steps)

Cyclically permute the parameters of the spline.

5.11.1 Detailed Description
template<int M, typename T> class Go::GoTensorProductSpline< M, T >

This is a template class that represent a multivariate spline with M parameters and coefficients
of type T.

Notes:

e The spline is defined by a set of M basises (one for each parameter), and a set of coefficients.
Each basis consists of a set of basis functions, and the coefficients are located in an M-indexed
grid (of the class GoBorrowedMVGrid(p. 14)).

e This means that the spline carries information about the basises it is using, but is only
borrowing the memory area where the coefficients are being held (since they are stored in
a grid that does not own its elements). In other words, the user is responsible for making
sure that the spline always has enough memory to store its necessary coefficients. This is
especially delicate in situations where the spline changes its number of coefficients, as in
knot insertion.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

54 Multivariate Splines Class Documentation

¢ The GoTensorProductSpline(p.51) is a mapping from R to R, and several objects of
this class is therefore necessary if the user wants to describe a spline object lying in RP,
D > 1. A utility function, CreateSplineSurface is available for making a Go::SplineSurface
with arbitrary dimension out of a set of bivariate GoTensorProductSpline(p.51) with
similar basises.

Definition at line 60 of file GoTensorProductSpline.h.

5.11.2 Constructor & Destructor Documentation

5.11.2.1 template<int M, typename T> Go::GoTensorProductSpline< M, T
>::GoTensorProductSpline ()

This constructor does not make a valid GoTensorProductSpline(p. 51) object.

However, it can later be assigned another object and thus become valid.

5.11.2.2 template<int M, typename T> Go::GoTensorProductSpline< M, T
>::GoTensorProductSpline (T * storage area)

This constructor does not make a valid GoTensorProductSpline(p. 51) object.

However, the pointer to the coefficient storage area is set, so that it is possible to have another
GoTensorProductSpline(p. 51) clone itself into it.

Parameters:
storage_ area pointer to the coefficient storage area

5.11.2.3 template<int M, typename T> Go::GoTensorProductSpline< M, T
>::GoTensorProductSpline (const GoBorrowedMVGrid< M, T > &
coefgrid, const int xconst order, bool is_ kreg)

Constructor that creates a tensor product B-spline whose coefficents is the M-dimensional grid
given as the first argument.

The basis functions in each parameter will be created with the given order and with a uniform
knotvector whose range spans from 0 to 1, and that is k-regular or not, depending on the last
argument. The ’order’ argument should point to a memory location where the M consecutive
spline orders are stored.

Parameters:
coefgrid the coefficient grid

order pointer to an M-sized array of integers representing the spline orders

18 kreg dictates whether or not the knotvectors should be k-regulars.

5.11.2.4 template<int M, typename T> Go::GoTensorProductSpline< M, T
>::GoTensorProductSpline (const GoBorrowedMVGrid< M, T > & coefs,
const int xconst order, const T xconst start param_wvals, const T xconst
end_param_ vals, bool k_ reg)

Constructor that creates a tensor product B-spline whose coefficients is the M-dimensional grid
given as the first argument.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.11 Go::GoTensorProductSpline< M, T > Class Template Reference 55

The ’order’ argument is a pointer to M consecutive integers that give the order in each parameter,
while the following two arrays, ’start param val’ and ’end param_val’ give the start and end
parameter values for the knot vector in each parameter. The knotvectors will be uniform, and the
last boolean argument 'k _reg’ defines whether they will have multiple knots in the end (’k_reg’
= true).

Parameters:
coefs the coefficient grid

order pointer to an M-sized array of integers representing the spline orders

start _param_ wvals pointer to an M-sized array dictating the start values for each parameter
range.

end_ param_ vals pointer to an M-sized array dictating the end values for each parameter
range.

k_reg whether or not the knotvectors should be k-regular.

5.11.2.5 template<int M, typename T> Go::GoTensorProductSpline< M, T
>::GoTensorProductSpline (const GoBorrowedMVGrid< M, T > & coefs,
const std::vector< double > x knotvectors, const int xconst order)

Constructor that creates a tensor product B-spline whose coefficients is the M-dimensional grid
given as the first argument.

The knotvectors for each parameter are defined by the user through the M consecutive STL-vectors
pointed to by the second argument. The argument named ’order’ points to a M-sized range of
integers specifying the spline order in each parameter. The routine will check that the length of
any given knotvector will be equal to the corresponding rowlength in ’coefs’ plus the order. If that
is not the case, an exception will be thrown.

Parameters:
coefs the coefficient grid

knotvectors pointer to an M-sized array of STL-vectors definining the M knotvectors.

order pointer to an M-sized array of integers representing the spline orders

5.11.2.6 template<int M, typename T> Go::GoTensorProductSpline< M, T
>::GoTensorProductSpline (const GoTensorProductSpline< M, T > &
rhs)

Copy constructor (weak - the new GoTensorProductSpline(p. 51) will share the same coefficient
storage area as ’rhs’).

Parameters:
rhs initialization spline

5.11.3 Member Function Documentation

5.11.3.1 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>::clone (GoTensorProductSpline< M, T > & rhs) const

Clones itself into the argument spline, who becomes a hard copy of ’this’ spline.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

56 Multivariate Splines Class Documentation

Note: It is the user’s responsibility to make sure that the 'rhs’ spline object’s coefficient storage
memory area is big enough to accomodate all the data that will be written into it.

Parameters:
rhs target spline object for the cloning

5.11.3.2 template<int M, typename T> GoBorrowedMVGrid<M, T>
Go::GoTensorProductSpline< M, T >::coefficientGrid () const

Returns the coeflicient grid.

NB: The returned grid will share its coefficients with the spline.

Returns:
the spline’s grid of coefficients (control points)

5.11.3.3 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>::cyclicPermute (int steps) [inline]

Cyclically permute the parameters of the spline.

A cyclical permutation with k "steps" will put parameter number i at position (i-k) %M

Example: For a trivariate spline with parameters (r, s, t):

e cyclicPermute(0) - new index order will be (r, s, t) (unchanged)

cyclicPermute(2

(0) - (r; s, t)
cyclicPermute(1) - new index order will be (s, t, r)
(2) - new index order will be (t, r, s)
(3) - (r; s, t)

cyclicPermute(3) - new index order will be (r, s, t) (unchanged)

e etc...

Parameters:
steps number of steps to cyclic permute

Definition at line 554 of file GoTensorProductSpline.h.

5.11.3.4 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>:evalSurf (int no_w, int no_ v, int par dir 1, int par dir 2, double
start _param_ 1, double start param_ 2, double end param__ 1, double
end _param_ 2, bool reverse_ dzr 1, bool reverse__ dzr 2, const double
xconst fized, T * res) const

Fast evaluation of a whole, bivariate surface on the spline.

Only valid for spline objects where M >= 2. The ’surface’ is defined as keeping all parameters
fixed exept for two, which moves through the range specified by the arguments ’start param -
1’, ’start _param_2’, ’end param 1’ and ’end param 2’ (must be within the valid range for
the respective parameters’ knot vectors). The number of samples in each of these two ranges are
defined in 'no_ u’ and 'no_ v’, which can be seen as the "resolution" of the surface. The arguments
'par_dir 1’ and 'par_dir 2’ specifies which two of the spline’s M parameters that should move

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.11 Go::GoTensorProductSpline< M, T > Class Template Reference 57

(the others being fixed). The arguments 'reverse dir 1’ and ’reverse dir 2’ specifies whether
the moving parameters should gradually increase from their min to their max value, or if they
should decrease from their max to their min value. The array pointed to by ’fixed’ gives the values
of the fixed parameters (in increasing order), and the pointer 'res’ points to a memory location in
which the 'no_u’+’no_ v’ computed result values should be written.

Parameters:
no__u number of samples along the first moving parameter

no_ v number of samples along the second moving parameter

par_dir 1 specify the first moving parameter (value from 0 to M-1)

par_dir 2 specify the second moving parameter (value from 0 to M-1)

start _param_ 1 start value for the sampled range of the first moving parameter
start _param_ 2 start value for the sampled range of the second moving parameter
end_param_ 1 end value for the sampled range of the first moving parameter
end_param_ 2 end value for the sampled range of the second moving parameter

reverse_ dir 1 set to true if sampling for the first moving parameter should be done starting
at the range’s end value and ending at the start value, rather than the other way around

reverse_ dir_ 2 set to true if sampling for the second moving parameter should be done
starting at the range’s end value and ending at the start value, rather than the other
way around

fized pointer to an array of double s specifying the values of those parameters that remains
fixed (in increasing order)

res pointer to the memory location where the result should be written

5.11.3.5 template<int M, typename T> void Go::GoTensorProductSpline< M,
T >::evalVolume (int * resolutions, double * range start, double *
range_end, T * res) const

Fast evaluation of the whole spline object for many parameter values.

The number of points to be calculated for each parameter is given in ’resolutions’.

Parameters:
resolutions should point to an M-sized array of integers, dictating how many (equidistant)
values should be calculated for each parameter

range_ start should point to an M-sized array of double s, dictating the start of the range
to be evaluated for each parameter

range_ end should point to an M-sized array of double s, dictating the end of the range to
be evaluated for each parameter

res pointer to the memory area where the result should be written. If we have M parameters
and want to evaluate for K, parameter values along parameter m, then the total number
of results will be ITM) K,,,.

5.11.3.6 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>::evalVolume (std::pair< double *, double x > x sample_ points, T * res)
const

Fast evaluation of the whole spline object for many parameter values.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

58 Multivariate Splines Class Documentation

The parameter values for the datapoints to be evaluated are given by the ’sample points’ argu-
ment, and the result is written to the memory area starting at the position indicated by the ’'res’
pointer.

Parameters:
sample_ points points to a M-sized range of pair< *double, *double> (one entry for each
parameter). The first of the double pointers in such a pair points to the beginning of
a range of parametric values, and the second points to one past the end of the range.
(This means that the number of samples to be effectuated for a given parameter 'm’ is
equal to (sample points[m].second - sample points[m)].first).

res pointer to the memory area where the result should be written. If we have M parameters
and want to evaluate for K, parameter values along parameter m, then the total number
of results will be IT}) K.

5.11.3.7 template<int M, typename T> GoTensorProductSpline<M, T>
Go::GoTensorProductSpline< M, T >::extract (T * storage area, int x
knot start indexes, int x knot_end_ indexes) const

Creates a new GoTensorProductSpline(p. 51) whose parameter domain is a subset of the orig-
inal spline.

The parameter intervals that should be kept in this spline are delimited by the intervals starting
with the knots specified in ’knot _start indexes’ and ’knot end indexes’ (should be M-length
integer arrays).

Parameters:
storage_ area a pointer to the coefficient storage area that the resulting spline should use.
NB: The user should make sure enough memory is allocated!

knot _start indexes pointer to an array of M integers, giving the indexes of the knotvector
knots that defines the start of the selected range for each parameter

knot end_indexes pointer to an array of M integers, giving the indexes of the knotvector
knots that defines the end of the selected range for each parameter

Returns:
a spline that represent the original spline in a subset of the original parameter range

5.11.3.8 template<int M, typename T> int Go::GoTensorProductSpline< M, T
>:ufindRange (int par dir, double value) const

For a given parameter, identifies the interval on the corresponding knotvector where the specified
parameter value is located.

Parameters:
par_ dir the concerned parameter

value the value we want to determine the knot interval for

Returns:
the index of the start knot of the interval where ’value’ is located on the specified knot vector.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.11 Go::GoTensorProductSpline< M, T > Class Template Reference 59

5.11.3.9 template<int M, typename T> void Go::GoTensorProductSpline<
M, T >:fit (const GoGenericGrid< M, T > & rawdata, Array<
GoApproximator< M, T > %, M > & methods, GoGenericGrid< M, T > &
errors, bool calculate errors = true)

Fit the spline to a grid of sample values, using a specified approximation method.

The samples to fit the spline to are given in the grid 'rawdata’, and the approximation method
to use for each parameter is given in the 'methods’ argument. There are several different ap-
proximation methods (see GoApproximator(p.11)), and the user can also write her own. If
’calculate errors’ is set to ’true’, then the approximation error at each sample value is filled into
the ’errors’ grid, which must have exactly the same shape as rawdata’.

NB: It is the users responsibility to make sure that enough memory is allocated for the spline
coefficients. The required memory depends on the chosen approximation method. By multiplying
together the results from calling GoApproximator::approximationSize()(p. 13) on each of the
applied approximator objects used, the number of coefficients (and thus the necessary memory
requirement) is obtained. This only works for approximators that can calculate the number of
coeflicients they will generate before execution of their approximation algorithm. For other ap-
proximators, the approximation size will have to be estimated in another way. Again, refer to
the documentation for GoApproximator::approximationSize()(p.13) for a solution to this
problem.

NB: 1t is also the users responsibility to make sure that enough memory is allocated for the ’errors’
grid.

Parameters:
rawdata the grid containing the sample values that we want to approximate with this spline.

methods an M-sized arrays of pointers to GoApproximator(p.11). The Go-
Approximator(p. 11) class is an abstract base class from which several approximation
objects inherits. Each method will be applied on the corresponding parameter.

errors a grid to which the approximation errors for each of the original datapoints are written
(if ’calculate _errors" is set to true - if not, this parameter remains unused).

calculate errors if this boolean variable is set to true, the approximation error will be
calculated for each of the datapoints. The error is written into the ’errors’ grid.

5.11.3.10 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>::fullEvaluate (GoGenericGrid< M, T > & res) const

Fast evaluation of the whole spline object, at equidistant parameter values.

The number of datapoints calculated for each parameter corresponds to the resolution of the grid

res’.
Parameters:
res The grid to which we want to write the result of the evaluation. At the same time, the
resolution (rowlengths) of the grid dictates how many samples we want to calculate for
each parameter.

5.11.3.11 template<int M, typename T> const BsplineBasis&
Go::GoTensorProductSpline< M, T >::getBasis (int ¢) const [inline]

Returns the basis for a specified parameter.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

60 Multivariate Splines Class Documentation

Parameters:
% the parameter

Returns:
the basis for the specified parameter

Definition at line 510 of file GoTensorProductSpline.h.

5.11.3.12 template<int M, typename T> std::vector<double>
Go::GoTensorProductSpline< M, T >::getKnotVector (int tensor dir)
const

Returns the knotvector corresponding to the specified parameter.

Returns:
the knotvector for the given parameter

5.11.3.13 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>:insertKnots (int dir, const std::vector< T > & new_ knots)

Knot insertion in a given parameter.

Insert knots at the knotvector for the parameter specified by ’dir’. The values of the knots to be
inserted are given in the 'new_knots’ vector.

Note: When knots are inserted, the number of control points also increases. It is the user’s
responsibility to assure that the spline has enough memory allocated to accommodate these new
coeflicients.

NB: This routine only works for T = double, since it makes use of the SISL library (function
1018).

Parameters:
dir the parameter whose knotvector the knots should be inserted to

new_knots vector containing the knots to be inserted

5.11.3.14 template<int M, typename T> GoTensorProductSpline<M-1, T>
Go::GoTensorProductSpline< M, T >:integrate (int dir, double x
domain_ start, double x domain_end, T x storage area) const

Integrates the spline along a specified parameter, producing a spline with one parameter less.

Returns a GoTensorProductSpline(p. 51) whose number of parameters N is one lower than for
the original spline. It is produced by integrating the original spline along the parameter given
as the first argument. The ’domain_start’ and ’domain end’ parameters specify which part of
the spline should be integrated. They should both point to an array in memory of M values,
which specify the limiting parameter values for the part to integrate. The ’domain_start[dir]’
and ’domain_end[dir]’ values specify the range of integration (which is to take place for this
parameter), while the other ’domain_start’ and ’domain_end’ values give which domain of the
spline should be integrated.

Parameters:
dir specify which parameter to integrate

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.11 Go::GoTensorProductSpline< M, T > Class Template Reference 61

domain_ start points to an array of M double s specifying the start values for each param-
eter

domain_ end points to an array of M double s specifying the end values for each parameter

storage_ area the returned spline will store its coefficients in the memory location pointed
to by this argument. NB: The user should make sure enough memory is allocated!

Returns:
a spline with one parameter less than the original spline, representing the integrated spline.
It’s start and end parameter values are as specified by domain_start and domain_end (except
for domain_start[dir] and domain_end[dir] which expresses the range of integration)

5.11.3.15 template<int M, typename T> bool Go::GoTensorProductSpline< M, T
>::operator== (const GoTensorProductSpline< M, T > & rhs) const
[inline]

Equality operator.

Returns true only if all the basises of the two splines are equal, and that they share the same
coefficient memory area.

Definition at line 523 of file GoTensorProductSpline.h.

References Go::GoTensorProductSpline< M, T >:basis_, and Go::GoTensorProductSpline< M,
T >:data_.

5.11.3.16 template<int M, typename T> int Go::GoTensorProductSpline< M, T
>::order (int ¢) const [inline]

Returns the order of the spline for a given parameter.

Parameters:
% the parameter

Returns:
the order of the spline for the specified parameter

Definition at line 498 of file GoTensorProductSpline.h.

5.11.3.17 template<int M, typename T> Array<T, 2 x M>
Go::GoTensorProductSpline< M, T >::paramspan () const

Returns an array containing the start and end parameter values.

The spline’s parameter ¢ has it start value at the array position (2i), and its end parameter value

is found at position (2i + 1).

Returns:
an array of start and end parameter values

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

62 Multivariate Splines Class Documentation

5.11.3.18 template<int M, typename T> T Go::GoTensorProductSpline< M, T
>::point (const double xconst params) const

Evaluate the spline for a certain choice of parameter values.
The parameter values are given in the argument array.

Note: If you want to evaluate a whole surface at a time, it will be much faster to use the eval-
Surf() (p. 56) function.

Parameters:
params pointer to an M-sized array containing the parameter values that should be used in
the evaluation

Returns:
the value of the spline function for the given parameters

5.11.3.19 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>:uraiseOrderTo (int new order, int dir)

Raise the order of the basis for a specified parameter.

The basis is raised to 'new_order’. It is required that 'new order’ is superior or equal to the
current order.

Note: When the order is raised, new knots and control points are inserted. It is the user’s
responsibility to assure that the spline has enough memory allocated in its coefficient storage area
to accomodate the new coefficients. Upper estimate of number of coefficients in a given parameter
is:

(rowlength(dir) - order(dir)) * (new order - order(dir) + 1) + new_order

The actual resulting number of coefficients may be less if the spline contains internal multiple
knots.

NB: This function only works for T = double, since it makes use of the SISL library (function
s1750).

Parameters:
new_ order the new order for the given parameter. Must be superior or equal to the current
order for that parameter.

dir the parameter for which the order should be raised

5.11.3.20 template<int M, typename T> GoTensorProductSpline<M-1, T>
Go::GoTensorProductSpline< M, T >::reduce (int dir, T param_wval, T *
data_ area) const

Making a spline with one less parameter from the original, obtained by fixing this parameter’s
value.

Returns a GoTensorProductSpline(p.51) whose number or parameters N is one lower than
the original spline. One parameter is removed by fixing its parameter value to ’param_val’. The
parameter to remove is specified by ’dir’

Parameters:
dir the parameter to remove in the result spline

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

5.11 Go::GoTensorProductSpline< M, T > Class Template Reference 63

param__val the value that this parameter should take when generating the result spline

data_ area a pointer to the coefficient storage area that the resulting spline should use. NB:
The user should make sure enough memory is allocated!

Returns:
a spline with one parameter less than the original spline, obtained by fixing the removed
parameter to a given value.

5.11.3.21 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>:rescaleKnotVector (int tensor dir, T start wvalue, T end value)

Rescales the knotvector for the given parameter.
The parameter’s new start and end values will match those given as arguments. The ratio between
the different knot intervals will be preserved.
Parameters:

tensor_ dir the parameter that we want to rescale the knotvector for

start wvalue new start value for the parameter range

end_ value new end value for the parameter range

5.11.3.22 template<int M, typename T> int Go::GoTensorProductSpline< M, T
>urowlength (int ¢) const [inline]

Return the number of coefficients for the specified parameter.

Parameters:
% the parameter

Returns:
the number of coefficients for the specified parameter

Definition at line 488 of file GoTensorProductSpline.h.

5.11.3.23 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>usetDataPointer (T * p)

Sets the spline’s coefficient storage area to start at the memory address given by 'p’.

It is the user’s responsibility to ensure that there is enough allocated memory to contain the size
of the spline’s coefficient grid. When setting the datapointer, no copying of coefficients from the
previous location will take place.

Parameters:
p the start of the memory area where the spline should look up and store its coefficients.

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

64 Multivariate Splines Class Documentation

5.11.3.24 template<int M, typename T> void Go::GoTensorProductSpline< M, T
>::setUniformKnotVector (int tensor dir, T start, T end, int order, bool
is_ kreg)

Redefines the basis for the specified parameter using a uniform knotvector and a given order.

Parameters:
tensor _dir the parameter that we want to redefine the basis for

start the start value of the parameter range
end the end value of the parameter range
order the requested order for the basis to be constructed

18 kreg defines whether the knotvector should be k-regular or not

5.11.3.25 template<int M, typename T> int Go::GoTensorProductSpline< M, T
>::size () const [inline]

Return the number of spline coefficients.

Returns:
the number of spline coefficients

Definition at line 478 of file GoTensorProductSpline.h.

The documentation for this class was generated from the following file:

e GoTensorProductSpline.h

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

Chapter 6

Multivariate Splines Page
Documentation

6.1 Practical example

Kari is a climate researcher that has just run a certain simulation on the earth’s atmosphere.
Her evaluation grid contains values at each degree confluence point on the planet, and for 18
pressure levels ("quasi-vertical coordinate"). Her simulation grid therefore contains 360 x 180 x
18 = 1166400 nodes.

In each node, a total of 128 physical quantities are calculated for each step of the simulation. The
simulation covers a time span of 15 years, with four evaluations each year (one for each season).
The total number of values in the grid is therefore:

128 values/node * 1166400 nodes /timestep 60 timesteps = 9 billion values.

Each calculated value could therefore be referred to with the following indices:

Physical quantity p
Latitude lat

Longitude lon

Pressure level lev

e Timestep t

The simulation software writes the result to memory as a long consecutive list of values such
that longitude has the shortest stride, then comes latitude, then comes time, then the concerned
physical quantity, and finally the timestep which has the longest stride of all.

Kari is not satisfied with the way the result data is ordered in memory. Sorted by stride, the
indices now are:
lat,lon,lev, p,t

This means that all grid information for a certain timestep ¢; is consecutively stored before the grid
information for the succeeding timestep ¢;11. This way, the data is globally sorted by timestep.
Kari would rather collect all information pertaining to a given physical quantity together, which
translates into the index ordering:

lat,lon,lev,t,p

66 Multivariate Splines Page Documentation

To do this, she first establishes a grid that "borrows" the memory where the simulation data is
located:

double* data_pointer = ... // (Insert function here to set the pointer to the start
// of the result memory area)

int[5] grid_dimensions;

grid_dimensions[0] = 360; // number of longitude steps

grid_dimensions[1] 180; // number of latitude steps

grid_dimensions[2] 18; // number of pressure levels

grid_dimensions[3] 128; // number of physical variables

grid_dimensions[4] 60; // number of timesteps

Go::GoBorrowedMVGrid<5, double> result_grid(data_pointer, grid_dimensions);

result_grid could be considered a convenient wrapper for the data already stored in memory.
Kari now defines a permutation that will change the indexing order such that the longest stride
will be on the physical quantity index rather than the time index.

int[] permutation[] = {0, 1, 2, 4, 3}; // permutation swapping the two last indices
result_grid.permuteElements (permutation);

Note:
The permuting operation will need twice as much memory as the logical size of the grid.
This can be prohibitive for very large grids. In our case the grid contains 9 billion values of
type double, and would therefore require 72 billion bytes of storage. Depending on Kari’s
hardware, she may or may not be able to carry out this operation. In case of problems,
she could use the slower, less memory-hungry equivalent member function Go::GoGeneric-
Grid::permuteElements memOpt()(p. 25).

From now on, Kari only wants to work on the physical variable called "Temperature". It is the
30th of the 128 variables, and since the physical valuables now has the longest stride, she can
define a sub-grid that only covers "Temperature":

Go::GoBorrowedMVGrid<4, double> temperature_grid; // define an uninitialized grid
temperature_grid = result_grid.subgrid(30); // access the subgrid for the 30th variable

Note:
No copying of results has taken place. The newly created temperature_grid just refer to a
smaller part of the same data that is referred to by result_grid.

The temperature is stored as degrees Kelvin. For various reasons, Kari would like to have the
temperature in degrees Celsius, which means that she should be subtracting 273.15 from each
value in the grid. This is done in one code line:

const double kelvin_shift = 273.15;
temperature_grid -= kelvin_shift;

Finally, Kari decides to save the temperature data to disk:

#include <ifstream>

ofstream os("temperature.grid");
temperature_grid.write_BINARY(os);
os.close();

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

6.1 Practical example 67

For presentation purposes, Kari wants to generate an 2048 x 1024 pixel image of the temperature
at surface level worldwide. To accomplish this, she already has a function that converts a memory
area with floating-point (double) values to a grey-scale JPEG image. But if she applies this
function on any subset of the data generated in the above mentioned simulation, she can only
generate pictures with the resolution 360 x 180. She wants to linearly interpolate between grid
points whenever needed, and this is a situation where a linear, bivariate spline can come in handy.
Let us see how she does this:

Using the simulation grid-points as control points in a linear spline

int basis_order[] = {2, 2, 2, 2}; // linear for longitude, latitude, level and time
Go::GoTensorProductSpline<4, double> spline(temperature_grid, basis_order, true);
// all four spline parameters will run from 0 (begin) to 1 (end)

// Sampling the spline at the requested points
const int res_x = 2048;
const int res_y = 1024;
double evaluated_storagel[res_x * res_y];
double level_and_time_parameter_values[2];
level_and_time_parameter_values[0] = 0; // we want to evaluate the spline at sea level
level_and_time_parameter_values[1] = 0; // we want to evaluate the spline at the start of
the simulation period

spline.evalSurf(res_x, // number of pixels in x direction

res_y, // number of pixels in y direction

0 x direction evaluated along first parameter (longitude)

1 y direction evaluated along second parameter (latitude)

0, // x evaluation starts at parameter value O

0 y evaluation starts at parameter value O

1 x evaluation ends at parameter value 1

1, // y evaluation ends at parameter value 1
false, // calculate x values using INCREASING parameter values
false, // calculate y values using INCREASING parameter values
level_and_time_parameter_values, // values of the fixed parameters
evaluated_storage); // where to write the result

Now, the memory allocated for evaluated_storage contains the evaluation of the spline at sea
level, at the start of the simulation, and using the requested resolution. A pointer to this memory
area can now be given to Kari’s function generating JPEG images.

Kari wants to send the temperature field to a colleague by email. However, the file that she saved
on disk earlier in this example is very big, it contains about 70 million double values, which makes
the file size something around 560 megabytes. This is too big to send over mail. However, she
is willing to compromise the accuracy of the data, since she knows that her colleague will only
use it to generate visual presentations and not for further simulation activities. She therefore
chooses not to send him the real 4D temperature grid, but rather a spline approximation of it.
The approximation she generates in the following way:

Go::Array<GoApproximator<4, double>*, 4> methods;
// ** compression method for LONGITUDE x**
methods[0] = new Go::GoLeastSquareApproximator(60, // control points

4, // order

0.05); // rigidity parameter
// ** compression method for LATITUDE xx
methods[1] = new Go::GoLeastSquareApproximator(30, // control points

4, // order

0.05); // rigidity parameter
// ** compression method for LEVEL *x*
methods[2] = new Go::GoLeastSquareApproximator(12, // control points

4, // order

0.05); // rigidity parameter
// *% compression method for TIME **
methods[3] = new Go::GoKnotremovalApproximator(3, // order

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

68 Multivariate Splines Page Documentation

3.0, // tolerance of +/- three degrees
0.1, // afctol
0); // no preservation of border deriv.

int necessary_data_size = methods[0].approximationSize() *
methods[1].approximationSize() *
methods[2] . approximationSize();

// the last approximator (Go::GoKnotremovalApproximator) is not able to predict

// how many control points it will need before runtime (approximationSize() will return

// a negative number. In order to make sure we have enough storage memory, we multiply

// by the following quantity:

int max_possible_time_control_points =

(-1) * methods[3].size() * temperature_grid.rowlength(3);

necessary_data_size *= max_possible_time_control_points;

std: :vector<double> storage(necessary_data_size);

Go: :GoTensorProductSpline spl(&storage[0]); // specify where the spline should store its
// coefficients, but no specification of the
// spline itself

// define a grid to store the error
std::vector<double> error_storage(temperature_grid.size()); // reserve the same amount of
memory to store error as
is used to store the
original temperature grid.
Go: :GoBorrowedMVGrid<4, double> error(&error_storagel[0]); // specify where to store the
// grid’s coefficients, but no
// specification on the grid
// itself.
spl.fit(temperature_grid, methods, errors, true);

ofstream os("temperature.spline");
spl.write_BINARY(os);

Note:

Notice how we deal with the fact that we cannot estimate the necessary size of the control
point storage space before actually running the Go::GoTensorProductSpline::fit()(p. 59)
function. The problem is that the Go::GoKnotremovalApproximator(p. 32) cannot cal-
culate this value a priori. Instead, by multiplying the absolute value of the return value of
its approximationSize() member function by the number of timesteps in the simulation grid,
we get an upper estimate on how many control points that can theoretically result from this
process. (In practice, the real number is usually much lower).

The spline is fitted to the data, and later saved in the file "temperature.spline" The error is
computed and stored in the error grid (we could have prevented this computation by setting the
last argument to the fit() function to ’false’ instead of ’true’).

Kari later found out that the number of spline control points along the time direction (after
applying the knot-removal approximator) was 40. Therefore the total storage space needed for
storing the spline’s coefficients are: 60 x 30 x 12 x 40 = 864000 values, which requires (multiply by
sizeof()) about 7 megabytes of storage space - a much more reasonable quantity to send by mail.
If Kari wanted to find out what the maximum approximation error was, she could have inspected
the resulting error grid in this way:

double max_error = max(fabs(error.minValue()), fabs(error.maxValue()));

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

Index

approximate
Go::GoApproximator, 12
Go::GoHybridApproximator, 30

Go::GoKnotremoval Approximator, 33
Go::GoLeastSquareApproximator, 36

Go::GoNeutral Approximator, 38

Go::GoSchoenbergApproximator, 46

approximationSize
Go::GoApproximator, 13
Go::GoHybrid Approximator, 31

Go::GoKnotremovalApproximator, 33
Go::GoLeastSquareApproximator, 36

Go::GoNeutral Approximator, 39

Go::GoSchoenbergApproximator, 46

blockRead
Go::GoGenericGrid, 19
borrowedCopy
Go::GoSelfcontainedGrid, 49

clone
Go::GoGenericGrid, 19
Go::GoScalableGrid, 41
Go::GoTensorProductSpline, 55
coeflicientGrid
Go::GoTensorProductSpline, 56
cyclicPermute
Go::GoGenericGrid, 20
Go::GoTensorProductSpline, 56

datacopy
Go::GoGenericGrid, 20

dumpCoefs
Go::GoGenericGrid, 20

dumpCoefs binary
Go::GoGenericGrid, 21

evalSurf
Go::GoTensorProductSpline, 56

evalVolume
Go::GoTensorProductSpline, 57

extract
Go::GoTensorProductSpline, 58

fillValue
Go::GoGenericGrid, 21

findPosition

Go::GoGenericGrid, 22
findRange

Go::GoTensorProductSpline, 58
fit

Go::GoTensorProductSpline, 58
flipDirection

Go::GoGenericGrid, 22
fullEvaluate

Go::GoTensorProductSpline, 59

getBasis
Go::GoTensorProductSpline, 59
getDataPointer
Go::GoGenericGrid, 22, 23
Go::GoScalableGrid, 41
getKnot Vector
Go::GoTensorProductSpline, 60
Go::GoApproximator, 11
Go::GoApproximator
approximate, 12
approximationSize, 13
Go::GoBorrowedMVGrid, 14
Go::GoBorrowedMVGrid
GoBorrowedMVGrid, 15
setDataPointer, 15
subgrid, 15
swap, 16
Go::GoGenericGrid, 17
Go::GoGenericGrid
blockRead, 19
clone, 19
cyclicPermute, 20
datacopy, 20
dumpCoefs, 20
dumpCoefs binary, 21
fillValue, 21
findPosition, 22
flipDirection, 22
getDataPointer, 22, 23
maxElem, 23
minElem, 23
operator x=, 23
operator+=, 24
operator-=, 24

70

INDEX

Go::
Go::

Go::
::GoScalableGrid

Go::
Go::

Go::
Go::

Go::
::GoTensorProductSpline

operator[|, 24, 25
permuteElements, 25
permuteElements memOpt, 25
read ASCII, 26

read BINARY, 26

resize, 26

rowlength, 27

size, 27

write ASCII, 28

write BINARY, 28

::GoHybridApproximator, 29
::GoHybrid Approximator

approximate, 30
approximationSize, 31
GoHybridApproximator, 30

::GoKnotremoval Approximator, 32
::GoKnotremoval Approximator

approximate, 33
approximationSize, 33
GoKnotremoval Approximator, 32

::GoLeastSquareApproximator, 35
Go::

GoLeastSquareApproximator
approximate, 36
approximationSize, 36
GoLeastSquareApproximator, 35
GoNeutral Approximator, 38
GoNeutral Approximator
approximate, 38
approximationSize, 39
GoScalableGrid, 40

clone, 41

getDataPointer, 41
GoScalableGrid, 41
numDims, 42

operator][], 42
permuteElements, 42
reshape, 43

rowlength, 43, 44

size, 44
GoSchoenbergApproximator, 45
GoSchoenbergApproximator
approximate, 46
approximationSize, 46
GoSchoenbergApproximator, 45
GoSelfcontainedGrid, 48
GoSelfcontainedGrid
borrowedCopy, 49
GoSelfcontainedGrid, 49
operator=, 49

resize, 50

swap, 50
GoTensorProductSpline, 51

clone, 55

coefficientGrid, 56

cyclicPermute, 56

evalSurf, 56

evalVolume, 57

extract, 58

findRange, 58

fit, 58

fullEvaluate, 59

getBasis, 59

getKnotVector, 60

GoTensorProductSpline, 54, 55

insertKnots, 60

integrate, 60

operator==, 61

order, 61

paramspan, 61

point, 61

raiseOrderTo, 62

reduce, 62

rescaleKnotVector, 63

rowlength, 63

setDataPointer, 63

setUniformKnotVector, 63

size, 64
GoBorrowedMVGrid

Go::GoBorrowedMVGrid, 15
GoHybrid Approximator

Go::GoHybrid Approximator, 30
GoKnotremoval Approximator

Go::GoKnotremoval Approximator, 32
GoLeastSquareApproximator

Go::GoLeastSquareApproximator, 35
GoScalableGrid

Go::GoScalableGrid, 41
GoSchoenbergA pproximator

Go::GoSchoenbergApproximator, 45
GoSelfcontainedGrid

Go::GoSelfcontainedGrid, 49
GoTensorProductSpline

Go::GoTensorProductSpline, 54, 55

insertKnots
Go::GoTensorProductSpline, 60

integrate
Go::GoTensorProductSpline, 60

maxElem
Go::GoGenericGrid, 23

minElem
Go::GoGenericGrid, 23

numDims
Go::GoScalableGrid, 42

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

INDEX

71

operator x= Go::GoTensorProductSpline, 64
Go::GoGenericGrid, 23 subgrid

operator+= Go::GoBorrowedMVGrid, 15
Go::GoGenericGrid, 24 swap

operator-— Go::GoBorrowedMVGrid, 16
Go::GoGenericGrid, 24 Go::GoSelfcontainedGrid, 50

operator=
Go::GoSelfcontainedGrid, 49 write_ ASCII

operator== Go::GoGenericGrid, 28
Go:GoTensorProductSpline, 61 write_ BINARY

operator]] Go::GoGenericGrid, 28

Go::GoGenericGrid, 24, 25
Go::GoScalableGrid, 42

order
Go::GoTensorProductSpline, 61

paramspan
Go::GoTensorProductSpline, 61
permuteElements
Go::GoGenericGrid, 25
Go::GoScalableGrid, 42
permuteElements memOpt
Go::GoGenericGrid, 25
point
Go::GoTensorProductSpline, 61

raiseOrderTo
Go::GoTensorProductSpline, 62
read ASCII
Go::GoGenericGrid, 26
read_ BINARY
Go::GoGenericGrid, 26
reduce
Go::GoTensorProductSpline, 62
rescaleKnotVector
Go::GoTensorProductSpline, 63
reshape
Go::GoScalableGrid, 43
resize
Go::GoGenericGrid, 26
Go::GoSelfcontainedGrid, 50
rowlength
Go::GoGenericGrid, 27
Go::GoScalableGrid, 43, 44
Go::GoTensorProductSpline, 63

setDataPointer
Go::GoBorrowedMVGrid, 15
Go::GoTensorProductSpline, 63
setUniformKnotVector
Go::GoTensorProductSpline, 63
size
Go::GoGenericGrid, 27
Go::GoScalableGrid, 44

Generated on Fri Mar 18 16:43:02 2005 for Multivariate Splines by Doxygen

