Structured Blocks Reference Manual

Generated by Doxygen 1.3.6

Fri Mar 18 16:50:53 2005

Contents

Structured Blocks

1.1 Whatisthis. o
1.2 Concepts . . . v v it e e e e e e e e e
1.3 Sampleofuse

1.4 Glossary oL e e e e e e

Structured Blocks Namespace Index

2.1 Structured Blocks Namespace List

Structured Blocks Hierarchical Index

3.1 Structured Blocks Class Hierarchy

Structured Blocks Class Index
4.1 Structured Blocks Class List

Structured Blocks Page Index
5.1 Structured Blocks Related Pages

Structured Blocks Namespace Documentation

6.1 BlockEnum Namespace Reference L oL,

Structured Blocks Class Documentation

7.1 Block< S, C, D > Class Template Reference.
7.2 BlockStructure< S, C, D, BlockType > Class Template Reference
7.3 MultilevelBlock< S, C, D > Class Template Reference
7.4 MultilevelSplineBlock< S, C, D > Class Template Reference
7.5 BlockEnum::ParamConfig< S > Class Template Reference
7.6 BlockEnum::ParamConfigEnumeration< S > Class Template Reference
7.7 PlotableGeometry< S, D > Struct Template Reference
7.8 PlotableResult< S > Struct Template Reference

[N

ot

11
11

13
13

ii

CONTENTS

7.9 PlotableSubblock< S, D > Struct Template Reference 54
7.10 SingleLevelSplineBlock< S, C, D > Class Template Reference 56
Structured Blocks Page Documentation 63
8.1 Model that has become cracked after heavy compression 63
8.2 Proofs e 64
8.3 3D interface illustration 65
8.4 Glossary e e e 66

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

Chapter 1

Structured Blocks

1.1 What is this

This library works with multidimensional data-blocks, either standalone or connected in a cluster
(or block-structure(p. 66), which is the word we use in this documentation). In short, a data-
block represents a region of space with a certain shape, and which can have one or more scalar fields
attached to it. Several blocks(p.66) connected in a structure(p.66) can in this way represent a
subdivision of space, with scalar fields stretching out continuously across blocks(p. 66).

One obvious application of blocks(p. 66) and block-structures(p.66) is representation of block-
structured grids, frequently encountered in numerical simulations. Such grids (usually 2D or 3D)
are defined to be block-wise regular grids, ie. they topologically consists of several regular grids
pieced together along their interfaces(p.67); the union of these grids constitutes a simulation mesh
for the object of the simulation. Each of these regular grids can be expressed as a block(p. 66),
and the whole simulation grid can be presented as a blockstructure(p. 66). The numerical results
from the simulation on this grid can be represented as scalar fields on the blocks(p. 66). (To keep
this idea in mind, we will from now on refer to the blocks(p. 66)’ scalar fields as the blocks(p. 66)’
results(p. 68)).

The benefit of expressing a simulation grid using this library’s blocks(p. 66) is the possibility for
compression. Highly refined simulation grids can often be extremely large and bulky, making them
impractical to copy, move around or inspect from a distance on a band-limited network. Blocks,
as provided by this library, can convert grids to continuous functions that can be compressed
considerably, and presented with several levels(p. 67) of detail. This compression is lossy, but can
be extremely effective (down to one percent or less of the original data), and the quality of the
resulting representation is often good enough for many tasks, like visual inspection. This makes
it possible to, for instance, distribute or inspect huge models on a band-limited network without
a huge time overhead, and can even allow engineers to transport fairly big grids on an ordinary
USB memory pen or other lightweight storage devices.

1.2 Concepts

1.2.1 Geometry, results, spatial and auxiliary parameters

More technically, a block(p. 66) represents a closed S-manifold(p. 67) in geometric space(p. 66)
RP (with S < D). It has a shape (which we will refer to as its geometry(p.66)) and optionally
one or more scalar fields (referred to as results(p. 68)). Its geometry(p. 66) and results(p. 68)

2 Structured Blocks

are parameterized with the same set of parameters, from a parameter space which is the unit cube
of RM (M > 1).

The parameters do not all have the same status, and we will rather say that the parameter space
is the unit cube of R¥*t¢ where S+ C = M. The reason for this precision is to clearly distinguish
between what we call spatial parameters(p. 68) on one hand, and auxiliary parameters(p. 66)
on the other. The block(p. 66), which is an S-manifold(p. 67), should be homeomorphic(p. 67)
with the unit cube in RS, and that is why the S first parameters are qualified as spatial. The
remaining C parameters do not necessarily (though they might) modify the geometrical position
of points in the block(p. 66).

Example 1:

An easy example to illustrate the difference between spatial(p.68) and auxiliary parame-
ters(p. 66) is to describe the earth’s atmosphere as a block(p. 66) using our definitions. It could
be parameterized on the spatial parameters(p.68) longitude, latitude and height, while the
auxiliary parameter(p. 66) time could be used to describe evolution. In this case, the auxiliary
parameter(p. 66) is completely detached from any spatial context.

Example 2:

On the other hand, we could express a hot air balloon floating in the atmosphere as a block(p. 66).
We had somehow defined a function which takes three spatial parameters(p. 68) and transform
them into the shape of the balloon, and still have time defined as an auxiliary parameter(p. 66).
In this case, the auxiliary parameter(p.66) modifies position as well, since the balloon is drift-
ing through the air, and maybe deforming itself in the process. However, the distinction between
spatial(p.68) and auxiliary parameters(p.66) is still useful, since it is the spatial param-
eters(p. 68) that play the primary role in defining the shape of the object, and since it is the
bijection from the block(p. 66)’s geometry(p.66) to the unit cube in R that defines our home-
omorphism(p. 67) necessary for talking about a manifold(p.67).

Note:
It is this requirement that makes it meaningless to talk about a block(p. 66) where S > D.

1.2.2 Block connectivity

Block(p. 15) interfaces:

Before starting to talk about how blocks(p.66) are connected together, we must define the in-
terfaces(p. 67) along which they can connect.

As mentioned above, a block(p. 66) is an S-manifold(p.67) in D-dimensional space, defined by a
homeomorphism(p. 67) between the unit cube in R and the concerned region in the geometric
space(p. 66). The unit cube is a bounded and closed region, and so will our manifold(p.67) be.
The boundaries of the unit cube will map to the boundaries of the block(p. 66). The boundary of
a closed S-manifold(p. 67) is itself a (S-1)-manifold(p.67). The boundary of the unit cube can
be subdivided into 25 "faces", each defined by fixing one of the S parameters to one of its extremal
values {0,1}. Each of these faces maps to a certain part of the manifold’s(p. 67) boundary. This
way, we define a subdivision of the block(p. 66)’s boundary into 2.5 separate regions, each of which
is an (S-1)-manifold(p.67). We call the block(p. 66)’s (S-1)-interfaces(p. 68).

We can go further. Each of the interfaces(p. 67) of the unit cube in R is itself a unit cube in RS~1.
It has a boundary consisting of 2(S—1) parts, obtained by fixing one of its S-1 parameters to one of
its extremal values {0, 1}. When mapping these boundaries back to our original manifold(p. 67),
we obtain it’s sm_ interface "(S-2)-interfaces", which are of course the points on the boundaries
between the manifold’s(p.67) (S-1)-interfaces(p.68). We can continue recursively to define
sm_ interface "(S-m)-interfaces", where m is a value in [1,2,..5]. The smallest unit of boundary

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

1.2 Concepts 3

is the 0-manifold(p.67), where all defining parameters are fixed to either 0 or 1, and which
constitutes a single point on the manifold’s(p. 67) boundary. It is easy to show(p.64) that for
a S-block(p. 68) (a block(p.66) with S parameters, an S-manifold(p.67)), its boundary will
contain exactly 2 () (S-m)-interfaces(p. 68).

Example:

We place ourselves in 3D-space, and use a block(p. 66) representing a 3-manifold(p.67) (S=3).
Moreover, our homeomorphism(p. 67) is the identity operator, so that the geometry(p. 66) of
our block(p.66) is identical to the unit cube. Then our block(p.66) has the following inter-
faces(p.67):

2-interfaces(p.67): m = 1, 2!(3) = 6 interfaces(p.67) (the 6 faces of the cube)
1-interfaces(p. 67): m = 2, 22 (g) = 12 interfaces(p. 67) (the 12 edges of the cube)

O-interfaces(p. 67): m = 3, 23(3) = 8 interfaces(p.67) (the 8 corner(p. 66)s of the cube)
Interfaces(p.67) shared by several blocks(p. 66)

Two or more blocks(p.66) can be connected by sharing a given (S-m)-interface(p.68). This
means that they must be sharing all of the 2(S — m) corner(p.66) corners of the inter-
face(p.67). It is not allowed for several blocks(p. 66) to share only parts of an interface(p.67)
with each other. Unless the dimension of the geometric space(p.66) is higher than the di-
mension of the manifold(p.67), it is not possible for more than two blocks(p.66) to share a
(S-1)-interface(p. 68) (for instance, if we are working with 3D-blocks in 3D-space, a maximum
of two blocks(p.66) can share the same, complete face). There are no such restrictions on (S-
m)-interfaces(p. 68) where m > 2.

Visual example:

Here(p. 65) is an illustration of block(p. 66) connectivity in the 3D case.

1.2.3 This library

The Block(p. 15):

The library is highly configurable to cover as many needs as possible. The blocks(p.66) can lie in
a space of arbitrary dimension D, be a manifold(p.67) of arbitrary number S (inferior or equal to
D), have as many auxiliary parameters(p.66) C as desired, and contain an arbitrary number of
results(p. 68) (in addition to its geometry(p. 66)). (Of course, for expressing simulation grids, D
and C are usually 2 or 3). The functions used to express geometry(p. 66) and results(p. 68) are
multivariate(p. 67) splines , defined in the class Go::GoTensorProductSpline . The abstract,
template base class for a block(p. 66) is called Block(p. 15). It doesn’t implement anything, but
specifies the minimum interface(p.67) that all blocks(p. 66) should have in order to be used in
a corresponding BlockStructure(p.21). A Block(p.15) is a template of S, C and D (as defined
above). You can use one of the predefined block-types, or define your own, as long as you stick
to the imposed interface(p.67) (eventually with extensions of your own). A basic, instantiable
block(p. 66) type provided by this library is SingleLevelSplineBlock(p. 56).

A more elaborate concept is that of a MultilevelBlock(p. 29), which contains several levels(p. 67)
of detail. The user can set which level(p.67) should be "active" through appropriate member
functions, either by specifying it directly, or (for more elaborate block(p. 66) types) by specifying
an error tolerance that should not be exceeded by the selected level(p.67). The provided class
MultilevelSplineBlock(p. 33) provides this functionality. The active level(p.66) (and even the
total number of levels(p.67)) can be set independently for each result(p.68) in the block(p. 66),
as well as for the block(p.66)’s geometry(p.66).

The BlockStructure(p. 21)

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

4 Structured Blocks

The BlockStructure(p. 21) is a template of S, C, D and on the kind of block(p.66) used . The
BlockStructure’s primary raison d’etre is to store a selection of Block(p. 15) s, as well as keeping
track of how blocks(p. 66) are connected with each other. It has no notion of "compression" or
levels(p. 67) (this is a concept that applies purely to the individual block(p. 66)), so you are free
to use any kind of block(p. 66) you like, as long as it derives from Block(p. 15).

A problem that arises with compressed blocks(p.66) is that their shape might change some-
what after compression, which may cause cracks and block(p.66) intersections in the model.
Here(p. 63) is an example. To overcome this problem, the BlockStructure(p.21) can "force"
continuity on blocks(p. 66) it knows to be neighbors. This is a very useful feature while working
with compressed blocks(p. 66), especially since it handles any configuration of block connectivity
as described in Block connectivity(p.2) . Remember that since the BlockStructure(p.21)
does not have any notion of compression or levels(p.67), the user has to explicitly specify when
it is desired to enforce continuity.

The PlotableSubblock(p. 54)

When a user wants to evaluate a geometric position and/or a result(p. 68) value for a certain
block(p. 66) and choice of parameter values, she has two options:

e She could ask the concerned Block(p. 15) directly to return the requested Go::GoTensor-
ProductSpline s, and she could evaluate them directly for the parameter values concerned.

o If the Block(p. 15) is contained in a BlockStructure(p. 21), she could also call the latter’s
member function BlockStructure::getPlotableRep()(p.23). This case does not require
that the user has direct access to the Block(p.15) itself, but there’s another advantage
too, namely that she can choose to enforce continuity if she wishes. The result(p. 68) is
returned as a vector of "block fragments": PlotableSubblock(p.54) . Each Plotable-
Subblock(p. 54) covers a part of the parametric domain that defines the Block(p. 15), and
contains the necessary Go::GoTensorProductSpline s to calculate the concerned values
for this part of the block(p.66). If the user has asked for enforced continuity, some of the
returned splines will differ from those really contained in the Block(p.15), to assure that
continuity is preserved.

Note:
Since it can be bothersome for the user to "piece together" a block(p.66) from all
its fragments returned upon a call to the BlockStructure::getPlotableRep()(p. 23)
function, BlockStructure(p.21) provides a pair of static utility functions that
can do exactly this: BlockStructure::sampleBlockGeometry()(p.26) and Block-
Structure::sampleBlockResult () (p. 27).

1.3 Sample of use

UNFINISHED!

1.4 Glossary

Here(p. 66) you can find explanations for the most commonly used terms in this documentation.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

Chapter 2

Structured Blocks Namespace Index

2.1 Structured Blocks Namespace List

Here is a list of all documented namespaces with brief descriptions:

BlockEnum (This namespace contains the necessary concepts and definitions for enu-
merating all (S-m)-interfaces(p.68) of an S-block. (Read also Block Con-
nectivity(p.2))) 13

Structured Blocks Namespace Index

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

Chapter 3

Structured Blocks Hierarchical Index

3.1 Structured Blocks Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Block< S, C,D > 15
MultilevelBlock< S, C, D > 29
MultilevelSplineBlock< S, C, D > 33
SingleLevelSplineBlock< S, C, D > oo 56
BlockStructure< S, C, D, BlockType > 21
BlockEnum::ParamConfig< S > 49
BlockEnum::ParamConfigEnumeration< S > 50
PlotableGeometry< S, D > e e e 52
PlotableResult< S > 53

PlotableSubblock< S, D > 54

Structured Blocks Hierarchical Index

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

Chapter 4

Structured Blocks Class Index

4.1 Structured Blocks Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Block< S, C, D > (This is the base class for all blocks(p.66)). 15
BlockStructure< S, C, D, BlockType > (This blockstructure(p.66) class stores
a group of Block(p. 15) s, and keeps track of how they are connected to each

other (ie. which blocks(p. 66) shares what interfaces(p.67))) 21
MultilevelBlock< S, C, D > (This is the (abstract) base class for all blocks(p. 66)
supporting multiple levels(p.67) of detail) 29

MultilevelSplineBlock< S, C, D > (This is a multilevel(p.67) block(p. 66) class
with was designed with the aim of representing and compressing simulation grids) 33
BlockEnum::ParamConfig< S > (An array holding a total of S different Param-
State(p-14) S) L 49
BlockEnum::ParamConfigEnumeration< S > (Array of S® entries, each holding a
ParamConfig(p. 49) set upon construction of the array. It describes all the S3

(S-m)-interfaces(p. 68) that an S-blockhas) 50
PlotableGeometry< S, D > (Represent the geometry(p. 66) for a fragment of a given

block(p.66)) e 52
PlotableResult< S > (Represent a result(p. 68) scalar field for a fragment of a given

block(p.66)) e e 53

PlotableSubblock< S, D > (This class represent a "fragment" of a block(p. 66), ie.
it can be used to evaluate a certain part of the block’s geometry(p.66) and
(optionally) results(p. 68) for any value of the spatial parameters(p. 68) that
fall within the specified domains) Lo Lo L. 54
SingleLevelSplineBlock< S, C, D > (This is a single-level(p. 67) block(p. 66) class
that does not support results(p. 68), only geometry(p.66)) 56

10

Structured Blocks Class Index

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

Chapter 5

Structured Blocks Page Index

5.1 Structured Blocks Related Pages

Here is a list of all related documentation pages:

Model that has become cracked after heavy compression 63
Proofs e 64
3D interface illustration Lo 65

Glossary oo e e e e 66

12

Structured Blocks Page Index

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

Chapter 6

Structured Blocks Namespace
Documentation

6.1 BlockEnum Namespace Reference

This namespace contains the necessary concepts and definitions for enumerating all (S-m)-
interfaces(p. 68) of an S-block. (Read also Block Connectivity(p.2)).

Classes

o class ParamConfig

An array holding a total of S different ParamState(p. 14) s.

e class ParamConfigEnumeration

Array of S® entries, each holding o ParamConfig(p. 49) set upon construction of the array. It
describes all the S® (S-m)-interfaces(p. 68) that an S-block has.

Enumerations

e enum ParamState

Describes the state of a parameter.

6.1.1 Detailed Description

This namespace contains the necessary concepts and definitions for enumerating all (S-m)-
interfaces(p. 68) of an S-block. (Read also Block Connectivity(p.2)).

The objects in this namespace should not be very interesting to the programmer that only wants
to benefit from this library’s API. They are more closely related with the inner workings of the
BlockStructure(p. 21).

14 Structured Blocks Namespace Documentation

6.1.2 Enumeration Type Documentation
6.1.2.1 enum BlockEnum::ParamState

Describes the state of a parameter.

If the state is MIN, then the parameter is considered "locked" to its minimum value (0). If the
state is MAX, the parameter is considered "locked" to its maximum value (1). If the state is
RUN, then the parameter is not locked, and can take any value in its domain. By associating
one ParamState(p. 14) with each of the block’s spatial parameters(p.68), we can refer to a
certain interface(p.67) of the block(p.66).

Example: For a 3D block(p.66) with 3 spatial parameters(p.68), we associate 3 Param-
State(p. 14) s. If we set these three ParamState(p. 14) s to respectively {RUN, RUN, RUN} (no
locked parameters), we are refering to the interior of the block(p.66). If we set them to {MIN,
RUN, RUN} (first parameter locked), we are refering to the "face" (2-interface(p.67)) where the
first parameter is locked to its minimum position. {MAX, RUN, RUN} would refer to the "face"
with the first parameter locked to its mazimum position, etc. It’s easy to see that we can specify
six different faces. Likewise, {MIN, MIN, RUN} would refer to an "edge" (1-interface(p.67)),
for which there are 12 different possibilities. {MIN, MIN, MIN} would refer to a corner(p. 66)
(0-interface(p.67)), and again we see that we have 8 different configurations, each corresponding
to a different corner(p. 66) in the block(p.66). Read the section on Block Connectivity(p.2)
for more.

Definition at line 53 of file BlockEnum.h.

Referenced by BlockEnum::ParamConfigEnumeration< S >:ParamConfigEnumeration().

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

Chapter 7

Structured Blocks Class
Documentation

7.1 Block< S, C, D > Class Template Reference

This is the base class for all blocks(p. 66).
#include <Block.h>
Inheritance diagram for Block< S, C, D >::

| Block< S, C, D >
t
[
| MultilevelBlock< S, C, D > | | SingleLevelSplineBlock< S, C, D >

T

| MultilevelSplineBlock< S, C, D> |

Public Member Functions

e virtual void write (std::ostream &os, bool ascii=false) const=0

Write the block(p. 66) to an output stream.

e virtual void read (std:istream &is, bool ascii=false)=0

Read the block(p. 66) from an input stream.

e virtual Go::BoundingBox boundingBox () const=0

Returns a bounding box enclosing the geometric area occupied by the block(p. 66).

e virtual void getCornerPosition (const bool *max, const double *C_values, double *res)
const=0

Function to retrieve the position of a block’s corner(p. 66) in geometrical space for a given set
of auxiliary parameters(p.66) (C-parameters).

16 Structured Blocks Class Documentation

e virtual const Go::Array< Go::GoTensorProductSpline< S+C, double >, D >
geometrySplines () const=0

Returns the multivariate(p. 67) splines that define this block’s geometry(p. 66).

e virtual const Go::GoTensorProductSpline< S+C, double > resultSplines (int resultID)
const=0

Returns the multivariate(p. 67) spline describing one of the block’s results(p. 68).

e virtual std::vector< boost::shared ptr< Go::GeomObject > > outline (double xaux_par -
values) const=0

Returns the outline(p. 67) of the block(p. 66).

e virtual int numResults () const=0

Returns the number of results(p. 68) that this block(p.66) contains.

e virtual int getGeometryLevel () const

Return the index number of the currently active geometry level(p.66) (the one whose splines
are returned upon a call to geometrySplines()(p.17)).

e virtual int getResultLevel (int res) const

Return the index number of the currently active result level(p.66) for the requested re-
sult(p. 68) (the one whose spline is returned upon a call to resultSplines()(p. 19)).

7.1.1 Detailed Description
template<int S, int C, int D> class Block< S, C, D >

This is the base class for all blocks(p. 66).

Classes deriving from this class can be used in combination with the BlockStructure(p.21)
template class. The template parameters S, C and D respectively represent the manifold(p. 67)
dimension of the block(p.66) (number of spatial parameters(p.68) that defines its geome-
try(p.66)), the number of auxiliary parameters(p.66), and the dimension of the geometric
space(p. 66) where the block(p.66) is situated. For a more detailed explanation, refer to the
main page(p. 1). The block(p. 66) is defined by its geometry(p. 66), as well an optional number
of results(p. 68), which are scalar fields defined on the volume occupied by the block(p. 66). Both
the block’s geometry(p.66) and result(p.68) fields are defined using M-variate splines, where
M is equal to S+C.

Definition at line 55 of file Block.h.

7.1.2 Member Function Documentation

7.1.2.1 template<int S, int C, int D> virtual Go::BoundingBox Block< S, C, D
>::boundingBox () const [pure virtuall

Returns a bounding box enclosing the geometric area occupied by the block(p. 66).

Returns:
the a bounding box enclosing the geometric area occupied by the block(p. 66)

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.1 Block< S, C, D > Class Template Reference 17

Implemented in MultilevelSplineBlock< S, C, D > (p. 36), and SingleLevelSplineBlock<
S, C, D > (p.58).

7.1.2.2 template<int S, int C, int D> virtual const Go::Array<Go::GoTensor-
ProductSpline<S+C, double>, D> Block< S, C, D >::geometrySplines ()

const [pure virtual]

Returns the multivariate(p. 67) splines that define this block’s geometry(p. 66).

There are D such splines, each expressing the position of the block(p.66) in one spatial dimen-
sion, as a function of the S+C parameters. (For instance, in 3D, we would have one spline
expressing the x-coordinate, another expressing the y-coordinate and a third one expressing the
z-coordinate).

Returns:
A D-sized array containing the multivariate(p.67) splines describing the geometry(p. 66)
of the block(p. 66) in each of the spatial dimensions.

Implemented in MultilevelSplineBlock< S, C, D > (p.37), and SingleLevelSplineBlock<
S, C, D > (p.58).

7.1.2.3 template<int S, int C, int D> virtual void Block< S, C, D
>::getCornerPosition (const bool x maz, const double * C_wvalues, double *
res) const [pure virtual]

Function to retrieve the position of a block’s corner(p. 66) in geometrical space for a given set of
auxiliary parameters(p.66) (C-parameters).

The block’s corners(p. 66) are defined as its 0-interfaces(p. 67) (see Block connectivity(p.2)).
A corner(p.66) is characterized by all the spatial parameters(p.68) taking up an extremal
value (either 0 or 1). The maz argument is used to specify which spatial parameters(p. 68) are
0 and which are 1. It should point to an array of S bools. If maz[i] = true, it means that for
the requested corner(p.66), the spatial parameter(p.68) 7 is set to 1, else it is set to 0. The
spatial coordinates of the requested corner(p.66) are written to the memory location pointed to
by res. This area should of course be big enough to store D double s.

Parameters:
maz Pointer to an array of S bool s, specifying whether the corresponding spatial parame-
ter(p. 68) is mazimum (1) or minimum (0) at this corner(p. 66). A value of true means
MaTimum.

C wvalues Pointer to an array of C double s, specifying the values of the auxiliary param-
eters(p. 66) to use when evaluating the position of the corner(p.66) corners.

res pointer to the memory location where the corner(p.66) position (D double s) will be
written. It is the user’s responsibility to allocate enough memory.

Implemented in MultilevelSplineBlock< S, C, D > (p.38), and SingleLevelSplineBlock<
S, C, D > (p.58).

7.1.2.4 template<int S, int C, int D> virtual int Block< S, C, D
>::getGeometryLevel () const [inline, virtuall

Return the index number of the currently active geometry level(p.66) (the one whose splines
are returned upon a call to geometrySplines()(p.17)).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

18 Structured Blocks Class Documentation

This number is always 0 for single-leveled(p.67) blocks(p.66). It only becomes interesting
for blocks(p.66) inheriting from MultilevelBlock(p. 29), reimplementing this function. The
reason this function is present here, is that the BlockStructure(p.21) object needs access to
this function when adjusting two interface(p. 67)-sharing blocks(p. 66) in order(p. 68) to assure
continuity. Even though the BlockStructure(p.21) is supposed to be ignorant of the concept
of levels(p.67), it has been implemented to take advantage of this information. This happens
because when BlockStructure(p.21) is trying to enforce continuity, it needs to know which
blocks(p. 66) in the structure provide the most "reliable" (most detailed) information.

Returns:
0 unless overridden by a block(p. 66) supporting multiple levels(p. 67)

Reimplemented in MultilevelBlock< S, C, D > (p.30), and MultilevelSplineBlock< S, C,
D > (p-39).

Definition at line 165 of file Block.h.

7.1.2.5 template<int S, int C, int D> virtual int Block< S, C, D >::getResultLevel
(int res) const [inline, virtuall

Return the index number of the currently active result level(p. 66) for the requested result(p. 68)
(the one whose spline is returned upon a call to resultSplines()(p. 19)).

This number is always 0 for single-leveled(p.67) blocks(p.66). It only becomes interesting for
blocks(p. 66) inheriting from MultilevelBlock(p. 29), reimplementing this function. The reason
this function is present here, is that the BlockStructure(p. 21) object needs access to this function
when adjusting two interface(p.67)-sharing blocks(p. 66) in order to assure continuity. Even
though the BlockStructure(p.21) is supposed to be ignorant of the concept of levels(p.67), it
has been implemented to take advantage of this information. This happens because when Block-
Structure(p.21) is trying to enforce continuity, it needs to know which blocks(p.66) in the
structure provide the most "reliable" (most detailed) information.

Parameters:
res index of the requested result(p. 68). Must be inside the range [0, numResults()(p.18)
- 1]

Returns:
0 unless overridden by a block(p. 66) supporting multiple levels(p. 67)

Reimplemented in MultilevelBlock< S, C, D > (p.30), and MultilevelSplineBlock< S, C,
D > (p.41).

Definition at line 184 of file Block.h.

7.1.2.6 template<int S, int C, int D> virtual int Block< S, C, D >::numResults ()
const [pure virtual]

Returns the number of results(p. 68) that this block(p.66) contains.

The results(p. 68) will always be refered to by using their index number 0 to numResults()(p. 18)

-1

Returns:
the number of results(p.68) that this block(p. 66) contains

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.1 Block< S, C, D > Class Template Reference 19

Implemented in MultilevelSplineBlock< S, C, D > (p.44), and SingleLevelSplineBlock<
S, C, D > (p.59).

7.1.2.7 template<int S, int C, int D> virtual std::vector<boost::shared -

ptr<Go::GeomObject> > Block< S, C, D >::outline (double x
aux_par values) const [pure virtuall

Returns the outline(p. 67) of the block(p. 66).

The outline(p. 67) is defined as the union of all the block’s 1-interfaces(p. 67) (edges), which is
collected, expressed as Go-objects (usually Go::SplineCurve s) and returned as the result(p. 68) of
the function call. This function can be used for all instantiations of the Block template, provided
that S > 0. The (fixed) values for the auxiliary parameters(p.66) are specified by the user in
an C-sized array pointed to by the argument aux par_values.

Parameters:
auz_ par_values points to an array of C double s, defining the values of the auxiliary
parameters(p. 66) for which we want the outline(p. 67) of the block(p. 66).

Returns:
a vector of Go-objects (usually Go:SplineCurves) expressing the outline(p.67) of the
block(p. 66) for the specified values for the auxiliary parameters(p. 66).

Implemented in MultilevelSplineBlock< S, C, D > (p.44), and SingleLevelSplineBlock<
S, C, D > (p.59).

7.1.2.8 template<int S, int C, int D> virtual void Block< S, C, D >::iread
(std::istream & is, bool ascit = false) [pure virtuall]

Read the block(p.66) from an input stream.

Parameters:
is the input stream where the block(p. 66) is read from
ascii if the user sets this argument to true, then the block(p.66) will be read in ASCII
format, else it will be read in BINARY format.

Implemented in MultilevelSplineBlock< S, C, D > (p.44), and SingleLevelSplineBlock<
S, C, D > (p.60).

7.1.2.9 template<int S, int C, int D> virtual const Go::GoTensorProduct-
Spline<S+C, double> Block< S, C, D >::iresultSplines (int resultID) const
[pure virtual]

Returns the multivariate(p. 67) spline describing one of the block’s results(p. 68).

Parameters:
resultID The index number of the requested result(p. 68). Valid values are from 0 to num-
Results()(p-18) - 1.

Returns:
A multivariate(p. 67) spline describing the requested result(p.68) scalar field

Implemented in MultilevelSplineBlock< S, C, D > (p.45), and SingleLevelSplineBlock<
S, C, D > (p.60).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

20 Structured Blocks Class Documentation

7.1.2.10 template<int S, int C, int D> virtual void Block< S, C, D >::write
(std::ostream & o0s, bool ascii = false) const [pure virtual]

Write the block(p. 66) to an output stream.

Parameters:
0s the output stream where the block(p. 66) will be written

ascii if the user sets this argument to true, then the block(p. 66) will be written in ASCII
format, else it will be written in BINARY format.

Implemented in MultilevelSplineBlock< S, C, D > (p.47), and SingleLevelSplineBlock<
S, C, D > (p.61).

The documentation for this class was generated from the following file:

e Block.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.2 BlockStructure< S, C, D, BlockType > Class Template Reference 21

7.2 BlockStructure< S, C, D, BlockType > Class Template
Reference

This blockstructure(p. 66) class stores a group of Block(p. 15) s, and keeps track of how they
are connected to each other (ie. which blocks(p. 66) shares what interfaces(p.67)).

#include <BlockStructure.h>

Public Member Functions

e BlockStructure ()

Default constructor, generating a blockstructure(p. 66) with no blocks.

¢ BlockStructure (std::vector< boost::shared ptr< BlockType< S, C, D > > > &blocks,
double cornerdist)

This constructor is initialized with a vector of blocks(p.66), and uses automnatic detection to
determine which blocks(p. 66) are connected along which interfaces(p. 67).

e void write (std::ostream &os, bool ascii=false) const

write the complete blockstructure(p. 66) to an output stream

e void read (std::istream &is, bool ascii=false)

Read the blockstructure(p. 66) from an input stream.

e std::vector< boost::shared ptr< PlotableSubblock< S, D > > > getPlotableRep (const
std::vector< int > &block numbers, const std::vector< int > &result numbers, Allocated-
MemoryHolder &amh, bool adapt, std::vector< int > &block start indexes, const double
«fixed _params=0) const

Return o vector of PlotableSubblock(p. 54) s collectively representing the blocks(p. 66) the
user have requested.

e int numBlocks () const
return the number of blocks(p. 66) in the blockstructure(p. 66)

e std::string connectivityInformation () const

return a string describing (in text format) how the blocks(p. 66) contained in this blockstruc-
ture(p.66) are connected with each other

¢ bool hasNeighbour Among (int block ix, const BlockEnum::ParamConfig< S > &pc,
const std::vector< int > &selected _blocks) const

Reports on whether or not a given (S-m)-interface(p. 68) in a specified block(p. 66) is shared
by a neighbour (from a set of specified blocks(p. 66)).

Static Public Member Functions

e template<typename FloatType> void sampleBlockGeometry (typename std::vector<
boost::shared ptr< PlotableSubblock< S, D > > >:iconst_iterator start range, type-
name std::vector< boost::shared ptr< PlotableSubblock< S, D > > >:const_iterator
end range, Go::Array< std::vector< double >, S > sample values, double tolerance, Float-
Type *result _pointer)

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

22 Structured Blocks Class Documentation

This is a utility function for sampling a block’s geometry(p.66) at a set of specified specified
parameter values.

¢ template<typename FloatType> void sampleBlockResult (int result ix local, type-
name std::vector< boost::shared ptr< PlotableSubblock< S, D > > >:const_iterator
start_range, typename std::vector< boost::shared ptr< PlotableSubblock< S, D > >
>:const _iterator end range, Go::Array< std::vector< double >, S > sample_values, dou-
ble tolerance, FloatType *result pointer)

This is a utility function for sampling one of the block’s results(p.68) at a set of specified
specified parameter values.

7.2.1 Detailed Description

template<int S, int C, int D, template< int, int, int > class BlockType> class Block-
Structure< S, C, D, BlockType >

This blockstructure(p. 66) class stores a group of Block(p. 15) s, and keeps track of how they
are connected to each other (ie. which blocks(p. 66) shares what interfaces(p.67)).

The class is highly templatized, on the dimension of the manifold(p.67) (the block’s number
of spatial parameters(p.68)), on the number of auxiliary parameters(p.66), and on the
dimension of the geometric space in which the blocks(p. 66) lie.

There is functionality for enforcing CO continuity between blocks(p. 66) sharing interfaces(p. 67).
This is useful for blockstructures(p. 66) containing compressed blocks(p.66), where we cannot
be guaranteed that the different blocks(p. 66)’ geometries(p.66) and result(p.68) fields will
perfectly match at the interfaces(p.67) due to detail loss during compression.

Definition at line 143 of file BlockStructure.h.

7.2.2 Constructor & Destructor Documentation

7.2.2.1 template<int S, int C, int D, template< int, int, int > class BlockType>
BlockStructure< S, C, D, BlockType >::BlockStructure () [inline]

Default constructor, generating a blockstructure(p. 66) with no blocks.
It can later be read()(p.25) into.
Definition at line 150 of file BlockStructure.h.

7.2.2.2 template<int S, int C, int D, template< int, int, int > class BlockType>
BlockStructure< S, C, D, BlockType >::BlockStructure (std::vector<
boost::shared ptr< BlockType< S, C, D > > > & blocks, double
cornerdist) [inline]

This constructor is initialized with a vector of blocks(p.66), and uses automatic detection to
determine which blocks(p.66) are connected along which interfaces(p.67).

Parameters:
block an STL vector with (shared pointers(p.68) to) the blocks(p.66) in question. The
blocks(p. 66) are never copied, only the shared pointers(p. 68).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.2 BlockStructure< S, C, D, BlockType > Class Template Reference 23

cornerdist corners(p.66) (0-interfaces(p.67)) from different blocks(p. 66) that are closer
to each other (Euclidian distance) than this value, are considered "connected". If both
corners(p. 66) of a block’s 1-interface(p. 67) (edge) is connected with two correspond-
ing corners(p. 66) in another block’s 1-interface(p.67), then the 1-interfaces(p.67)
are considered connected. Generally, if the 2(S — m) corners(p.66) of one of the
block’s (S-m)-interfaces(p.68) are connected with those of another block’s (S-m)-
interface(p. 68), the interfaces(p.67) are considered to be connected.

Note:

It is not allowed to let two or more blocks(p.66) share only parts of an interface(p.67)
with each other (for instance, having two 3D-blocks(p. 66)’s sharing only 3 of the four cor-
ners(p.66) of a face (1-manifold(p.67)) with each other). The blocks(p.66) can share
O-interfaces(p.67), 1-interfaces(p.67) and so on, but in each case, the complete inter-
face(p.67) must be shared. Read the section on block connectivity(p. 2) for more infor-
mation about block connectivity.

The user should make sure that cornerdist is a much smaller number than the sides of the
smallest block’s bounding box (to avoid errors such as connecting two corners(p.66) of the
same block(p. 66)).

Definition at line 35 of file BlockStructure templates.h.

7.2.3 Member Function Documentation

7.2.3.1 template<int S, int C, int D, template< int, int, int > class BlockType>
std::string BlockStructure< S, C, D, BlockType >::connectivityInformation
() const [inline]

return a string describing (in text format) how the blocks(p. 66) contained in this blockstruc-
ture(p. 66) are connected with each other

This function was used for debugging purposes, but is left here, as it can come in handy in
conveying connectivity information to the user.

Definition at line 310 of file BlockStructure templates.h.

7.2.3.2 template<int S, int C, int D, template< int, int, int > class BlockType>
std::vector< boost::shared ptr< PlotableSubblock< S, D > > >
BlockStructure< S, C, D, BlockType >::getPlotableRep (const std::vector<
int > & block numbers, const std::vector< int > & result numbers,
AllocatedMemoryHolder & amh, bool adapt, std::vector< int > &
block_start indexes, const double * fired params = 0) const [inline]

Return a vector of PlotableSubblock(p. 54) s collectively representing the blocks(p. 66) the user
have requested.

This function considers all blocks(p. 66) requested by the user in ’block numbers’, with all the
results(p. 68) requested in ’result_numbers’. It generates a vector of (shared pointers(p.68)
to) PlotableSubblock(p.54) s that can be used to evaluate the requested blocks(p.66) and
results(p. 68).

Note:
Technical: The reader might ask why not just return the blocks(p. 66) themselves, since
they provide direct access to the GoTensorProductSpline s defining their geometry(p. 66)

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

24 Structured Blocks Class Documentation

and all their results(p. 68). Why go to the seemingly awkward step of (possibly) splitting up
the blocks(p. 66) and return a vector of PlotableSubblock(p. 54)7

The answer to this question is that we want to be able to assure continuity between
blocks(p.66). block "Blocks" registered as "neighbours" by the BlockStructure, have no
knowledge of this themselves, and will not be able to adjust their interfaces(p.67) to each
other in order to provide exact CO continuity. The BlockStructure, on the other hand, can
use this additional information to adjust their spline coefficients in the interface(p. 67) areas
such that CO continuity is assured.

In order to do this, its often necessary to insert additional knots into the splines’ knotvectors.
We don’t want to modify the blocks(p.66)’ internal splines directly. Moreover, we want to
keep knot insertion local, avoiding refining the whole block(p. 66). Therefore, we build up
an entirely new spline model that assures CO continuity, and return this model to the user.
The blocks(p. 66)’ original splines are used to the fullest possible extent, and in region where
adjustment have to be made, new splines are defined to make the transitions.

As long as the user sticks to the splines and associated parameter domains provided by the
returned PlotableSubblock(p. 54) s, she should not have to worry about any of this.

The BlockStructure provides two static functions to facilitate working with Plotable-
Subblock(p. 54) s rather than Block(p. 15) s. These are sampleBlockGeometry()(p. 26)
and sampleBlockResult()(p. 27)

Parameters:
block _numbers vector containing the indexes of the blocks(p.66) that we want to have a
plotable(p. 68) representation for (valid numbers are 0 to numBlocks()(p.25) - 1)

result numbers vector containing the indexes of the results(p. 68) that we want to have a
plotable(p. 68) representation for (valid numbers are 0 to the number of results(p. 68)
present in the blocks(p. 66) - 1)

amh Since the data structures contained in the PlotableSubblocks s do not own their data,
any additional memory allocated during execution of this function will be stored in
this memory holder. The user doesn’t need it for anything special, but she should not
dispose of it (let it go out of scope) before doing the same with the generated Plotable-
Subblock(p. 54) s.

adapt if set to ’true’, the BlockStructure will generate "transitional splines" at the inter-
faces(p.67) of neighbouring blocks(p.66) in order to assure CO continuity between
them. The user will not notice the presence of these transitional splines as long as she
sticks to using the PlotableSubblock(p. 54) s the way they are supposed to. (Read
documentation for PlotableSubblock(p. 54)).

block _start indexes for this function, all PlotableSubblock(p.54) s collectively repre-
senting a certain block(p. 66) are stored consecutively in the returned vector. To indicate
where the representation of one block(p.66) ends and another one begins, the vector
’block _start _indexes’ will contain the start indices in the resulting vector for the repre-
sentation of each requested block(p. 66).
Exemple: The user requested the blocks(p.66) numbered 2, 4 and 5. For the re-
turned vector V, block(p.66) 2 will be represented by the PlotableSubblock(p. 54)
s indexed from V[0] to V[block start indices[1]-1]. Block(p.15) 4 will be represented
from V[block_start_indices[1]] to V[block_start indices[2]-1]. Block(p.15) 5 will be
represented from V[block start indices|2]] up to the last entry of the vector.

fized params pointer to an array of C double s, representing the values that the auxil-
iary parameters(p.66) should take when constructing the PlotableSubblock(p. 54)
s. (The splines contained in the PlotableSubblock(p. 54) s themselves only depend on
the S spatial parameters(p.68)).

Definition at line 136 of file BlockStructure templates.h.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.2 BlockStructure< S, C, D, BlockType > Class Template Reference 25

7.2.3.3 template<int S, int C, int D, template< int, int, int > class BlockType>
bool BlockStructure< S, C, D, BlockType >::hasNeighbourAmong (int
block iz, const BlockEnum::ParamConfig< S > & pc, const std::vector< int
> & selected_ blocks) const [inline]

Reports on whether or not a given (S-m)-interface(p.68) in a specified block(p. 66) is shared
by a neighbour (from a set of specified blocks(p. 66)).

Parameters:
block iz the index of the block(p.66) we want to query

pc the specification of the interface(p.67) we want to query (read BlockEnum::Param-
Config(p.49) to learn how to specify an interface(p.67) with this object)

selected_ blocks indexes the candidate blocks(p.66) for neighbourship

Returns:
‘true’ if the block(p. 66) with the index ’block ix’ has a neighbour among those indexed in
"selected blocks’ along the interface(p. 67) specified by 'pc’.

Definition at line 3179 of file BlockStructure templates.h.
7.2.3.4 template<int S, int C, int D, template< int, int, int > class BlockType> int
BlockStructure< S, C, D, BlockType >::numBlocks () const [inline]

return the number of blocks(p. 66) in the blockstructure(p. 66)

Returns:
the number of blocks(p. 66) in the structure

Definition at line 162 of file BlockStructure templates.h.

7.2.3.5 template<int S, int C, int D, template< int, int, int > class BlockType>
void BlockStructure< S, C, D, BlockType >::read (std::istream & s, bool
ascit = false) [inline]

Read the blockstructure(p. 66) from an input stream.

Parameters:
is the input stream where the blockstructure(p. 66) is read from

ascit if the user sets this argument to true, then the block structure will be read in ASCII
format, else it will be read in BINARY format.

Definition at line 104 of file BlockStructure templates.h.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

26 Structured Blocks Class Documentation

7.2.3.6 template<int S, int C, int D, template< int, int, int > class BlockType>
template<typename FloatType> void BlockStructure< S, C, D, BlockType
>::sampleBlockGeometry (typename std::vector< boost::shared ptr<
PlotableSubblock< S, D > > >::const iterator start range, typename
std::vector< boost::shared ptr< PlotableSubblock< S, D > >
>::const _iterator end range, Go::Array< std::vector< double >, S >
sample_values, double tolerance, FloatType * result pointer) [inline,
static]

This is a utility function for sampling a block’s geometry(p.66) at a set of specified specified
parameter values.

It takes as input the PlotableSubblock(p.54) s returned from the getPlotableRep()(p.23)
function. The PlotableSubblock(p. 54) s are those contained in the range ’start range’ - ’end -
range’ Together they should represent and cover the parameter domain of one block(p.66), with
no parameter domain overlap among themselves. Using these 'fragments’, the corresponding
block’s geometry(p.66) will be sampled at the parameter values specified by the S vectors in
’sample values’, and the samples will be written consecutively to the memory area pointed to by
result _pointer’. (Total number of D-dimensional samples is equal to the product of the length
of the ’sample values’ vectors). The ’tolerance’ argument defines how ’far outside’ a parametric
value can lie outside a subblock(p.69)’s parametric domain and still be considered part of the
domain.

NB: The vectors of ’sample values’ should contain monotonously increasing values! However for
optimality reasons, this routine does not verify this condition.

Parameters:
start _range start of the range of (shared pointers(p.68) to) the Plotable-
Subblock(p. 54) s that represent the block(p. 66).

end_range end of the range of (shared pointers(p.68) to) the PlotableSubblock(p. 54)
s that represent the block(p. 66).

sample_ values Array containing S vectors, each associated with one of the spatial pa-
rameters(p. 68) of the block(p.66), and specifying for which values of this parameter
the block’s geometric position should be sampled.

tolerance defines how ’far outside’ a certain parametric value can lie outside a sub-
block(p. 69)’s parametric domain and still be considered part of the domain. Should
be kept to a very small value.

result pointer the result of the sample process will be written to the memory area pointed
to by this pointer. The number of D-dimensional samples will be equal to the value
obtained by multiplying the length of the S vectors in ’sample values’ together. Each
sample is written with the dimension as the shortest stride(p.68) (D different values),
then the first parameter. The last parameter is sampled with the longest stride(p. 68).

Definition at line 23 of file SampleBlock templates.h.

References Go::GoGenericGrid< M, T >::blockRead(), and Go::GoGenericGrid< M, T >::get-
DataPointer().

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.2 BlockStructure< S, C, D, BlockType > Class Template Reference 27

7.2.3.7 template<int S, int C, int D, template< int, int, int > class BlockType>
template<typename FloatType> void BlockStructure< S, C, D, BlockType
>::sampleBlockResult (int result iz local, typename std::vector<
boost::shared ptr< PlotableSubblock< S, D > > >::const iterator
start _range, typename std::vector< boost::shared ptr< PlotableSubblock<
S, D > > >::iconst_iterator end_range, Go::Array< std::vector< double
>, S > sample_values, double tolerance, FloatType * result pointer)
[inline, static]

This is a utility function for sampling one of the block’s results(p. 68) at a set of specified specified
parameter values.

It takes as input the PlotableSubblock(p.54) s returned from the getPlotableRep()(p.23)
function. The PlotableSubblock(p. 54) s are those contained in the range ’start _range’ - ’end _-
range’ Together they should represent and cover the parameter domain of one block(p. 66), with
no parameter domain overlap among themselves. Using these 'fragments’; the corresponding
block’s requested result(p. 68) will be sampled at the parameter values specified by the S vectors
in ’sample values’, and the samples will be written consecutively to the memory area pointed
to by ’result pointer’. (Total number of samples is equal to the product of the length of the
sample values’ vectors). The ’tolerance’ argument defines how ’far outside’ a parametric value
can lie outside a subblock(p. 69)’s parametric domain and still be considered part of the domain.

NB: The vectors of ’'sample values’ should contain monotonously increasing values! However for
optimality reasons, this routine does not verify this condition.

Parameters:
result ix_local the index of the result(p.68) we want to evaluate

start _range start of the range of (shared pointers(p.68) to) the Plotable-
Subblock(p. 54) s that represent the block(p. 66).

end_range end of the range of (shared pointers(p.68) to) the PlotableSubblock(p. 54)
s that represent the block(p. 66).

sample_values Array containing S vectors, each associated with one of the spatial pa-
rameters(p. 68) of the block(p.66), and specifying for which values of this parameter
the block’s result(p. 68) should be sampled.

tolerance defines how ’far outside’ a certain parametric value can lie outside a sub-
block(p. 69)’s parametric domain and still be considered part of the domain. Should
be kept to a very small value.

result _pointer the result of the sample process will be written to the memory area pointed
to by this pointer. The number of samples will be equal to the value obtained by
multiplying the length of the S vectors in ’sample values’ together. The writing order is
such that the first parameter is sampled with the lowest stride(p. 68); the last parameter
with the longest.

Definition at line 109 of file SampleBlock templates.h.

References Go::GoGenericGrid< M, T >:blockRead(), Go:GoTensorProductSpline< M, T
>::evalVolume(), and Go::GoGenericGrid< M, T >::getDataPointer().

7.2.3.8 template<int S, int C, int D, template< int, int, int > class BlockType>
void BlockStructure< S, C, D, BlockType >::write (std::ostream & o0s, bool
ascii = false) const [inline]

write the complete blockstructure(p. 66) to an output stream

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

28 Structured Blocks Class Documentation

Parameters:
o0s the output stream where the block(p. 66) will be written

ascit if the user sets this argument to ’true’, the structure will be written in ASCII format,
else it will be written in BINARY format

Definition at line 77 of file BlockStructure templates.h.

The documentation for this class was generated from the following files:

¢ BlockStructure.h
e BlockStructure templates.h
e SampleBlock_templates.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.3 MultilevelBlock< S, C, D > Class Template Reference 29

7.3 MultilevelBlock< S, C, D > Class Template Reference

This is the (abstract) base class for all blocks(p. 66) supporting multiple levels(p.67) of detail.
#include <Block.h>
Inheritance diagram for MultilevelBlock< S, C, D >::

| Block< S, C, D > |

T

| MultilevelBlock< S, C, D > |

T

| MultilevelSplineBlock< S, C, D > |

Public Member Functions

e virtual int numGeometryLevels () const=0

Return the number of geometry(p. 66) levels(p.67) that this block(p.66) contains.

e virtual int numResultLevels (int result) const=0
Return the number of levels(p.67) contained in this block(p.66) to represent a specified re-
sult(p. 68).

e virtual void setResultLevel (int resID, int lev)=0

Sets the active level(p.66) for the result(p. 68) indezed resID’ to lev’.

e virtual void setGeometryLevel (int lev)=0

Sets the active geometry level(p.66) to ‘lev’.

e virtual int getResultLevel (int resID) const=0
Get the indez of the currently active level(p. 66) for the result(p.68) indezed ’resID’.

e virtual int getGeometryLevel () const=0

Get the index of the currently active geometry level(p. 66).

e virtual bool setResultPrecision (int resID, double prec)=0

If the block(p.66) contains information regarding the intrinsic error for each result(p.68)
level(p. 67), this function allows for automatic selection of level(p.67) for a given result(p. 68),
based on an error criterion.

e virtual bool setGeometryPrecision (double prec)=0

If the block(p. 66) contains information regarding the intrinsic error for each geometry(p. 66)
level(p. 67), this function allows for automatic selection of level(p.67) for the geometry(p. 66),
based on an error criterion.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

30 Structured Blocks Class Documentation

7.3.1 Detailed Description
template<int S, int C, int D> class MultilevelBlock< S, C, D >

This is the (abstract) base class for all blocks(p. 66) supporting multiple levels(p.67) of detail.

Classes deriving from this class can be used in combination with the BlockStructure(p.21)
template class. The template parameters S, C and D represent respectively the manifold(p. 67)
dimension of the block(p.66) (number of spatial parameters(p.68) that defines its geome-
try(p.66)), the number of auxiliary parameters(p.66), and the dimension of the geometric
space(p. 66) where the block(p. 66) is situated. For a more detailed explanation, refer to the main
page(p. 1). The block(p. 66) is defined by its geometry(p. 66), as well as an optional number of
results(p. 68) , which are scalar fields defined on the volume occupied by the block(p. 66). Both
the block’s geometry(p.66) and result(p.68) fields are defined using M-variate splines, where
M is equal to S+C. Moreover, both the geometry(p.66) and each of the results(p. 68) can have
multiple representations, with different level(p. 67) of detail, each represented by a different set of
splines. Usually, these levels(p.67) are all approximations with different accuracy of an "original,
exact representation". The user can set the active level(p. 66) for the geometry(p. 66) and each
of the results(p. 68), and in this way impose which spline representation should be returned when
the geometrySplines()(p. 17) or resultSplines()(p. 19) functions are called.

Definition at line 213 of file Block.h.

7.3.2 Member Function Documentation

7.3.2.1 template<int S, int C, int D> virtual int MultilevelBlock< S, C, D
>::getGeometryLevel () const [pure virtuall

Get the index of the currently active geometry level(p. 66).

Returns:
the index of the currently active geometry level(p. 66)

Reimplemented from Block< S, C, D > (p.17).
Implemented in MultilevelSplineBlock< S, C, D > (p.39).

7.3.2.2 template<int S, int C, int D> virtual int MultilevelBlock< S, C, D
>::getResultLevel (int resID) const [pure virtuall

Get the index of the currently active level(p. 66) for the result(p. 68) indexed 'resID’.

Parameters:
resID the result(p. 68) for which we want to know the active level(p. 66)

Returns:
the index of the active level(p. 66) for the specified result(p. 68)

Reimplemented from Block< S, C, D > (p.18).
Implemented in MultilevelSplineBlock< S, C, D > (p.41).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.3 MultilevelBlock< S, C, D > Class Template Reference 31

7.3.2.3 template<int S, int C, int D> virtual int MultilevelBlock< S, C, D
>:numGeometryLevels () const [pure virtuall

Return the number of geometry(p. 66) levels(p. 67) that this block(p. 66) contains.

Returns:
the number of geometry(p.66) levels(p. 67) that this block(p. 66) contains

Implemented in MultilevelSplineBlock< S, C, D > (p.43).

7.3.2.4 template<int S, int C, int D> virtual int MultilevelBlock< S, C, D
>:numResultLevels (int result) const [pure virtuall

Return the number of levels(p.67) contained in this block(p.66) to represent a specified re-
sult(p. 68).

Parameters:
\ref result "result" the index of the result(p.68) for which we want to know the number of
levels(p. 67)

Returns:
the number of levels(p. 67) for the specified result(p. 68)

Implemented in MultilevelSplineBlock< S, C, D > (p.43).

7.3.2.5 template<int S, int C, int D> virtual void MultilevelBlock< S, C, D
>::setGeometryLevel (int lev) [pure virtuall

Sets the active geometry level(p. 66) to ’lev’.

Parameters:
lev the number of the level(p.67) we want to set as ’active’. Valid values are from 0 to
numGeometryLevels()(p. 31) - 1.

Implemented in MultilevelSplineBlock< S, C, D > (p.45).

7.3.2.6 template<int S, int C, int D> virtual bool MultilevelBlock< S, C, D
>::setGeometryPrecision (double prec) [pure virtuall

If the block(p.66) contains information regarding the intrinsic error for each geometry(p.66)
level(p. 67), this function allows for automatic selection of level(p. 67) for the geometry(p. 66),
based on an error criterion.

The error of the chosen level(p.67) should be inferior to the given precision, while still choosing a
level(p. 67) containing as little information as possible (as low on detail as possible). If there is no
sufficiently precise level(p.67), the most accurate level(p. 67) is selected, and ’false’ is returned.
On the other hand, if there are sufficiently precise levels(p. 67) present, the least detailed of these
will be chosen, and ’true’ is returned. If the block(p.66) type does not this kind of automatic
level(p. 67) selection, an exception should be thrown.

Parameters:
prec the maximum tolerated error (as compared with the exact representation).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

32 Structured Blocks Class Documentation

Returns:
‘true’ if it managed to find a suitable level(p. 67), 'false’ if no sufficiently accurate level(p. 67)
could be found.

Implemented in MultilevelSplineBlock< S, C, D > (p.46).

7.3.2.7 template<int S, int C, int D> virtual void MultilevelBlock< S, C, D
>::setResultLevel (int resID, int lev) [pure virtual]

Sets the active level(p. 66) for the result(p. 68) indexed ’resID’ to 'lev’.

Parameters:
resID the index of the result(p.68) for which we want to set the active level(p. 66). This
index should be between 0 and numResults()(p. 18) - 1.

lev the number of the level(p.67) that we want to set as ’active’ for this result(p.68).
This should be between 0 and numResultLevels()(p. 31) - 1, where the argument to
numResultLevels() (p. 31) is 'resID’.

Implemented in MultilevelSplineBlock< S, C, D > (p.46).

7.3.2.8 template<int S, int C, int D> virtual bool MultilevelBlock< S, C, D
>::setResultPrecision (int resID, double prec) [pure virtuall

If the block(p.66) contains information regarding the intrinsic error for each result(p.68)
level(p. 67), this function allows for automatic selection of level(p.67) for a given result(p. 68),
based on an error criterion.

The error of the chosen level(p.67) should be inferior to the given precision, while still choosing a
level(p. 67) containing as little information as possible (as low on detail as possible). If there is no
sufficiently precise level(p.67), the most accurate level(p. 67) is selected, and ’false’ is returned.
On the other hand, if there are sufficiently precise levels(p. 67) present, the least detailed of these
will be chosen, and ’true’ is returned. If the block(p.66) type does not this kind of automatic
level(p. 67) selection, an exception should be thrown.

Parameters:
resID the result(p.68) for which we want to set the active level(p. 66)

prec the maximum tolerated error (as compared with the exact representation).
Returns:

‘true’ if it managed to find a suitable level(p. 67), 'false’ if no sufficiently accurate level(p. 67)
could be found.

Implemented in MultilevelSplineBlock< S, C, D > (p.46).

The documentation for this class was generated from the following file:

e Block.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.4 MultilevelSplineBlock< S, C, D > Class Template Reference 33

7.4 MultilevelSplineBlock< S, C, D > Class Template Ref-
erence

This is a multilevel(p. 67) block(p. 66) class with was designed with the aim of representing and
compressing simulation grids.

#include <MultilevelSplineBlock.h>

Inheritance diagram for MultilevelSplineBlock< S, C, D >::

| Block< S, C, D > |

T

| MultilevelBlock< S, C, D > |

T

| MultilevelSplineBlock< S, C, D > |

Public Member Functions

e MultilevelSplineBlock ()

Constructor making an "invalid" MultilevelSplineBlock. It can not be used directly, but can be
assigned to other blocks(p.66).

¢ MultilevelSplineBlock (const Go::Array< Go::GoGenericGrid< S+C, double > *, D
> &geometry, const std:vector< Go::GoGenericGrid< S+C, double > x > &results,
double basis_tol)

Constructor making a MultilevelSplineBlock containing one, single level(p.67), the one consid-
ered to be ’ezact’.

e MultilevelSplineBlock (const MultilevelSplineBlock< S, C, D > &)

copy constructor

¢ MultilevelSplineBlock & operator= (const MultilevelSplineBlock< S, C, D > &)

assignment operator (exception safe)

e void swap (MultilevelSplineBlock< S, C, D > &rhs)
function to quickly swap two blocks(p. 66)

¢ void setWriteMode (bool results=true, bool errors=true, bool all _levels=true, bool use -
float=true) const

Set the writing mode for the block(p. 66), decinding which components should be written to
stream when calling the write()(p. 47) function.

e virtual void write (std::ostream &os, bool ascii=false) const

Write the block(p. 66) to an output stream.

e virtual void read (std:istream &is, bool ascii=false)

Read the block(p.66) from an input stream. This may or may not be a complete definition of
the block(p. 66) - it depends on which parts were available from the stream. Read setWrite-
Mode()(p. 47) for more.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

34

Structured Blocks Class Documentation

bool geometrylsHierarchisable () const

This function reports whether geometry(p. 66) approzimations can be generated from the infor-
mation currently present in the block(p. 66).

bool resultIsHierarchisable (int res) const

This function reports whether approzimations for a given result(p.68) can be generated from
the information currently present in the block(p. 66).

void makeGeometryHierarchy (const std:vector< Go::Array< boost::shared ptr<
Go::GoApproximator< S+C, double > >, S+C > > &method)

From a geometry(p.66) base level(p. 66) (supposedly present), generate a "hierarchy” of lev-
els(p.67) that approzimates this base level(p.66).

void makeResultHierarchy (const std::vector< Go::Array< boost::shared ptr< Go::Go-
Approximator< S+C, double > >, S+C > > &method, int resultID)

From a result(p.68) base level(p.66) (supposedly present), generate a "hierarchy” of lev-
els(p. 67) that approzimates this base level(p. 66).

virtual Go::BoundingBox boundingBox () const

Returns a bounding box enclosing the geometric area occupied by the block(p. 66).

virtual void getCornerPosition (const bool *max, const double *C_values, double *res)
const

Function to retrieve the position of a block’s corner(p.66) in geometrical space for a given set
of auxiliary parameters(p.66) (C-parameters).

virtual const Go::Array< Go::GoTensorProductSpline< S+C, double >, D >
geometrySplines () const

Returns the multivariate(p. 67) splines that define this block’s geometry(p. 66).

virtual const Go::GoTensorProductSpline< S+C, double > resultSplines (int resultID)
const

Returns the multivariate(p. 67) spline describing one of the block’s results(p. 68).

virtual void setResultLevel (int resID, int lev)
Sets the active level(p.66) for the result(p. 68) indezed 'resID’ to lev’.

virtual void setGeometryLevel (int lev)

Sets the active geometry level(p.66) to ‘lev’.

virtual bool setResultPrecision (int resID, double prec)

If the block(p.66) contains information regarding the intrinsic error for each result(p.68)
level(p. 67), this function allows for automatic selection of level(p. 67) for a given result(p. 68),
based on an error criterion.

virtual bool setGeometryPrecision (double prec)

If the block(p. 66) contains information regarding the intrinsic error for each geometry(p. 66)
level(p. 67), this function allows for automatic selection of level(p.67) for the geometry(p. 66),
based on an error criterion.

virtual int numGeometryLevels () const

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.4 MultilevelSplineBlock< S, C, D > Class Template Reference 35

Return the number of geometry(p. 66) levels(p.67) that this block(p.66) contains.

e virtual int numResultLevels (int result) const
Return the number of levels(p.67) contained in this block(p.66) to represent a specified re-
sult(p. 68).

e virtual int getResultLevel (int resID) const

Get the indez of the currently active level(p. 66) for the result(p.68) indezed ’resID’.

e virtual int getGeometryLevel () const

Get the index of the currently active geometry level(p.66).

e virtual int numResults () const

Returns the number of results(p. 68) that this block(p.66) contains.

e virtual std::vector< boost::shared ptr< Go:GeomObject > > outline (double xaux_par_ -
values) const

Returns the outline(p. 67) of the block(p. 66).

e const Go::Array< Go::GoBorrowedMVGrid< S+C, double >, D > getGeometryError
() const

Returns the grids containing the geometric error between the currently active level(p.66) and
the base level(p. 66).

o const Go::GoBorrowedMVGrid< S+C, double > getResultError (int resID) const
Returns the grid containing the error between the currently active level(p.66) and the base
level(p.66) for the specified result(p. 68).

e const std::vector< double > & getOriginalKnotvector (int tdir) const

Return the knotvector for the spline expressing the "original model”, or the base level(p. 66).

e Go::Array< std::pair< double, double >, D > getGeometryRanges () const
Get the boundaries (minimum and mazimum values) for the volume occupied by the block(p. 66)
in geometric space(p. 66).

e std::pair< double, double > getResultRange (int res) const

Get the minimum and mazimum value for the specified result(p. 68).

e Go::Array< double, D > getMaxGeometryError () const
Return the mazimum value of the absolute geometry(p.66) error between the currently active
geometry level(p.66) and the base level(p. 66), for each of the D spatial dimensions.

¢ double getMaxResultError (int res) const

Return the mazimum value of the absolute result(p.68) error between the currently active
level(p.66) and the base level(p.66), for a given result(p. 68).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

36 Structured Blocks Class Documentation

7.4.1 Detailed Description
template<int S, int C, int D> class MultilevelSplineBlock< S, C, D >

This is a multilevel(p. 67) block(p. 66) class with was designed with the aim of representing and
compressing simulation grids.

It contains functionalty for generating several levels(p.67) of detail based on a given, "exact"
representation. The exact representation is given when an object of this class is first constructed,
using scalar grids (Go::GoGenericGrid) to specify the geometric position and result(p.68)
values. The MultilevelSplineBlock represents these grid internally as linear splines, interpolating
values between grid nodes linearly. When generating approximations, other spline orders(p. 68)
can be used.

Independently of the level(p.67) of detail currently active, the user can always access the original
knotvector (the one generated in the constructor in order to define the linear spline), using the get-
OriginalKnotvector()(p. 40) function. This allows the user to determine for which parameter
values (the knots of the knotvector) he should evaluate his spline representation in order to retrieve
the original gridpoints.

Definition at line 43 of file MultilevelSplineBlock.h.

7.4.2 Constructor & Destructor Documentation

7.4.2.1 template<int S, int C, int D> MultilevelSplineBlock< S, C, D
>::MultilevelSplineBlock (const Go::Array< Go::GoGenericGrid< S+4C,
double > x, D > & geometry, const std::vector< Go::GoGenericGrid< S4C,
double > x > & results, double basis tol) [inline]

Constructor making a MultilevelSplineBlock containing one, single level(p. 67), the one considered
to be ’exact’.

The geometric position of the grid nodes, as well as the scalar results(p. 68) assigned to them,
are specified by a collection of Go::GoGenericGrid s. These grids should always be of the same
shape, ie. along a given index, all the grids should have the same number of gridpoints.

Parameters:
geometry an array of D grids specifying the spatial position of the grid nodes in each of the
D spatial directions.

results a vector of grids, each specifying the value of a certain scalar field defined on the grid
in each gridpoint.

basis_tol a value concerning the tolerance to be used when working with knotvectors, to
define whether two knots are equal or not. Should be set low; an acceptable value is
often 1.0e-8 or smaller.

Definition at line 23 of file MultilevelSplineBlock _templates.h.

7.4.3 Member Function Documentation

7.4.3.1 template<int S, int C, int D> Go::BoundingBox MultilevelSplineBlock< S,
C, D >:boundingBox () const [inline, virtuall

Returns a bounding box enclosing the geometric area occupied by the block(p. 66).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.4 MultilevelSplineBlock< S, C, D > Class Template Reference 37

Returns:
the a bounding box enclosing the geometric area occupied by the block(p. 66)

Implements Block< S, C, D > (p.16).
Definition at line 865 of file MultilevelSplineBlock _templates.h.

7.4.3.2 template<int S, int C, int D> bool MultilevelSplineBlock< S, C, D
>::geometryIsHierarchisable () const [inline]

This function reports whether geometry(p.66) approximations can be generated from the infor-
mation currently present in the block(p. 66).

This class contains functionality for generating a user-defined hierarchy of levels(p.67) of detail
. The requirement, however, is that there is a base level(p. 66) present in the block(p. 66), from
which the other levels(p. 67) can be generated. Such a base level(p.66) is supposed to be the
’exact’ representation of the block(p. 66), and is usually set when the block(p. 66) is constructed.
However, it may be that the current block(p. 66) does not contain this base level(p. 66), notably
because the block(p.66) has been read()(p.44) from a stream that did not provide it. In that
case, the levels(p.67) contained in the block(p.66) cannot be changed.

If there is a base level(p. 66) for geometry(p.66) present in the current block(p.66), then it
is possible to generate approximating levels(p.67), and this function will return ’true’. In the
opposite case, the return value will be ’false’.

Returns:
true or false depending on whether approximating levels(p.67) can be generated or not.

Definition at line 1335 of file MultilevelSplineBlock templates.h.
Referenced by MultilevelSplineBlock< S, C, D >::makeGeometryHierarchy().

7.4.3.3 template<int S, int C, int D> const Go::Array< Go::GoTensor-
ProductSpline< S4C, double >, D > MultilevelSplineBlock< S, C, D
>::geometrySplines () const [inline, virtual]

Returns the multivariate(p. 67) splines that define this block’s geometry(p. 66).

There are D such splines, each expressing the position of the block(p.66) in one spatial dimen-
sion, as a function of the S+C parameters. (For instance, in 3D, we would have one spline
expressing the x-coordinate, another expressing the y-coordinate and a third one expressing the
z-coordinate).

Returns:
A D-sized array containing the multivariate(p.67) splines describing the geometry(p. 66)
of the block(p. 66) in each of the spatial dimensions.

Implements Block< S, C, D > (p.17).
Definition at line 925 of file MultilevelSplineBlock templates.h.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

38 Structured Blocks Class Documentation

7.4.3.4 template<int S, int C, int D> void MultilevelSplineBlock< S, C, D
>::getCornerPosition (const bool x maz, const double * C_wvalues, double *
res) const [inline, virtual]

Function to retrieve the position of a block’s corner(p. 66) in geometrical space for a given set of
auxiliary parameters(p.66) (C-parameters).

The block’s corners(p. 66) are defined as its 0-interfaces(p. 67) (see Block connectivity(p.2)).
A corner(p.66) is characterized by all the spatial parameters(p.68) taking up an extremal
value (either 0 or 1). The maz argument is used to specify which spatial parameters(p. 68) are
0 and which are 1. It should point to an array of S bools. If maz[i] = true, it means that for
the requested corner(p.66), the spatial parameter(p.68) ¢ is set to 1, else it is set to 0. The
spatial coordinates of the requested corner(p.66) are written to the memory location pointed to
by res. This area should of course be big enough to store D double s.

Parameters:
max Pointer to an array of S bool s, specifying whether the corresponding spatial parame-
ter(p. 68) is mazimum (1) or minimum (0) at this corner(p. 66). A value of true means
mazimum.

C wvalues Pointer to an array of C double s, specifying the values of the auxiliary param-
eters(p. 66) to use when evaluating the position of the corner(p.66) corners.

res pointer to the memory location where the corner(p.66) position (D double s) will be
written. It is the user’s responsibility to allocate enough memory.

Implements Block< S, C, D > (p.17).
Definition at line 896 of file MultilevelSplineBlock templates.h.

7.4.3.5 template<int S, int C, int D> const Go::Array< Go::GoBorrowedMVGrid<
S+4C, double >, D > MultilevelSplineBlock< S, C, D >::getGeometryError
() const [inline]

Returns the grids containing the geometric error between the currently active level(p.66) and
the base level(p.66).

The error grids have the same shape (number of nodes for each index) as the original "base-grids"
that was first used to define the geometry(p. 66) of this block(p. 66). Each node in the original
grid therefore has an associated value in the error grid, describing the error between the currently
active level(p. 66) and the original grid (the base level(p. 66)).

Note:

Whether or not this function works does not depend on the presence of the base level(p. 66)
itself, but rather on the presence of the error grid generated when the active level(p.66)
was first established. This error grid is not necessarily present if this block(p. 66) has been
read()(p.44) from a stream rather than being generated "from scratch" with the make-
GeometryHierarchy()(p. 42) and makeResultHierarchy()(p. 42) functions. In any case,
if the requested error grid is not present, an exception will be thrown.

The returned error grids do not own their coefficients, they only share them with the error
grids internally stored in the block(p. 66).

Returns:

An array of D grids, each expressing the error in the corresponding spatial dimension between
the currently active level(p.66) and the original base object.

Definition at line 1253 of file MultilevelSplineBlock templates.h.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.4 MultilevelSplineBlock< S, C, D > Class Template Reference 39

7.4.3.6 template<int S, int C, int D> int MultilevelSplineBlock< S, C, D
>::getGeometryLevel () const [inline, virtuall

Get the index of the currently active geometry level(p. 66).

Returns:
the index of the currently active geometry level(p. 66)

Implements MultilevelBlock< S, C, D > (p. 30).
Definition at line 994 of file MultilevelSplineBlock templates.h.

7.4.3.7 template<int S, int C, int D> Go::Array< std::pair< double, double >, D >
MultilevelSplineBlock< S, C, D >::getGeometryRanges () const [inline]

Get the boundaries (minimum and maximum values) for the volume occupied by the block(p. 66)
in geometric space(p. 66).

...in other words, return the "bounding box" of the block(p. 66).

Note:
The values returned are for the "exact representation" of the block(p. 66)’s geometry(p. 66),
as specified by its base level(p.66). The actual bounding box of the currently active
level(p. 66) may differ slightly.

Returns:
a Go::Array with D entries of std: :pair<double, double>, where each entry represent one
dimension in geometric space(p.66). The first value in the std: :pair is the minimum value
of the block(p. 66)’s position in space along this dimension, the second value is the maximum
value.

Definition at line 1191 of file MultilevelSplineBlock _templates.h.

7.4.3.8 template<int S, int C, int D> Go::Array< double, D >
MultilevelSplineBlock< S, C, D >::getMaxGeometryError () const
[inline]

Return the maximum value of the absolute geometry(p. 66) error between the currently active
geometry level(p.66) and the base level(p. 66), for each of the D spatial dimensions.

Note:
Even in the case that the block(p.66) does not contain a complete errorgrid for the ac-
tive level(p. 66) (so that the getGeometryError()(p.38) function cannot be called), this
function can still be used to retrieve the error’s maximum value.

Returns:
A Go::Array containing D values, each representing, for one dimension, the maximum error
between the currently active level(p.66) and the base level(p.66).

Definition at line 1211 of file MultilevelSplineBlock templates.h.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

40 Structured Blocks Class Documentation

7.4.3.9 template<int S, int C, int D> double MultilevelSplineBlock< S, C, D
>::getMaxResultError (int res) const [inline]

Return the maximum value of the absolute result(p.68) error between the currently active
level(p. 66) and the base level(p. 66), for a given result(p. 68).

Note:
Even in the case that the block(p.66) does not contain a complete errorgrid for the active
level(p.66) (so that the getResultError()(p.40) function cannot be called), this function
can still be used to retrieve the error’s maximum value.

Parameters:
res the index of the result(p. 68) for which we are requesting the extremal error value on the
active level(p. 66).

Returns:
The value of the maxiumum error between the current level(p. 67) and the base level(p. 66),
for the specified result(p. 68).

Definition at line 1219 of file MultilevelSplineBlock templates.h.

7.4.3.10 template<int S, int C, int D> const std::vector< double > &
MultilevelSplineBlock< S, C, D >::getOriginalKnotvector (int tdir) const
[inline]

Return the knotvector for the spline expressing the "original model", or the base level(p. 66).

This function will always work, regardless of whether the base level(p.66) is actually present
in this block(p.66) or not. The knotvector can be used to determine the parameter values for
which we need to evaluate the splines (on any given level(p.67)) to "reconstruct" the position
and values of the nodes in the original grid.

Note:
This knotvector is used to describe a spline basis of order(p.68) 2. That means that the
first and last knot in the vector are there for border purposes, and could be ignored when
evaluating "gridpoints". The number of gridpoints in the original grid, for a given parameter,
is equal to the length of the corresponding knotvector minus two.
The knotvector is the same whether we consider geometry(p. 66) or any of the results(p. 68).

Parameters:
tdir specify which knotvector we want to have returned. Each of the S+C parameters have
their own knotvector.

Returns:
the knotvector for the specified parameter for the base level(p. 66) spline.

Definition at line 1283 of file MultilevelSplineBlock templates.h.

7.4.3.11 template<int S, int C, int D> const Go::GoBorrowedMVGrid< S+C,
double > MultilevelSplineBlock< S, C, D >::getResultError (int resID)
const [inline]

Returns the grid containing the error between the currently active level(p.66) and the base
level(p. 66) for the specified result(p. 68).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.4 MultilevelSplineBlock< S, C, D > Class Template Reference 41

The error grid has the same shape (number of nodes for each index) as the original "base-grid"
that was first used to define this result(p.68) for this block(p.66). Each node in the original
grid therefore has an associated value in the error grid, describing the error between the currently
active level(p. 66) and the original grid (the base level(p. 66)).

Note:

Whether or not this function works does not depend on the presence of the base level(p. 66)
itself, but rather on the presence of the error grid generated when the active level(p.66)
was first established. This error grid is not necessarily present if this block(p. 66) has been
read()(p.44) from a stream rather than being generated "from scratch" with the make-
GeometryHierarchy()(p. 42) and makeResultHierarchy()(p. 42) functions. In any case,
if the requested error grid is not present, an exception will be thrown.

The returned error grid does not own its coefficients, it only shares them with the error grid
internally stored in the block(p. 66).

Parameters:
resID the index for the result(p.68) for which we want to have the error grid. Valid values
for resID is from 0 to numResults()(p.44) - 1.

Definition at line 1270 of file MultilevelSplineBlock _templates.h.

7.4.3.12 template<int S, int C, int D> int MultilevelSplineBlock< S, C, D
>::getResultLevel (int resID) const [inline, virtuall

Get the index of the currently active level(p.66) for the result(p. 68) indexed ’resID’.

Parameters:
resID the result(p. 68) for which we want to know the active level(p.66)

Returns:
the index of the active level(p. 66) for the specified result(p. 68)

Implements MultilevelBlock< S, C, D > (p.30).
Definition at line 982 of file MultilevelSplineBlock templates.h.

7.4.3.13 template<int S, int C, int D> std::pair< double, double >
MultilevelSplineBlock< S, C, D >::getResultRange (int res) const
[inline]

Get the minimum and maximum value for the specified result(p. 68).

Note:
The values returned are for the "exact representation" of the requested result(p.68), as
specified by its base level(p.66) in the block(p.66). The actual extremal values of the
currently active level(p.66) may differ slightly.

Parameters:
res the index of the result(p. 68) for which we are requesting the extremal values.

Returns:
A pair of double s representing respectively the minimum and the maximum value for the
specified result(p. 68) scalar field.

Definition at line 1199 of file MultilevelSplineBlock templates.h.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

42 Structured Blocks Class Documentation

7.4.3.14 template<int S, int C, int D> void MultilevelSplineBlock< S, C,
D >::makeGeometryHierarchy (const std::vector< Go::Array<
boost::shared ptr< Go::GoApproximator< S4C, double > >, S4+C > > &
method) [inline]

From a geometry(p.66) base level(p.66) (supposedly present), generate a "hierarchy" of lev-
els(p. 67) that approximates this base level(p. 66).

If such levels(p.67) are already defined, they will be removed. If there is no base level(p. 67)
present in the block(p.66) (see geometryIsHierarchisable()(p.37)), an exception will be
thrown. The levels(p.67) will be defined by spline functions approximating the original grid
at base level(p.66). These spline functions, of the class Go::GoTensorProductSpline, will
be approximated using techniques specified by objects deriving from the Go::GoApproximator
class. For more information about specifying approximation techniques, read the documentation
for that class, as well as the one for the Go::GoTensorProductSpline::fit() function.

Note:

Each level(p. 67) in the hierarchy should be progressive more detailed (more accurate) than
the preceding one. This conforms to the idea of "hierarchy", where there is a natural ’ordening’
of the levels(p.67) from "coarse" to "fine". This ordering is not verified by this function in
any way, but the user is encouraged to observe it. The setGeometryPrecision()(p.46)
function assumes that the levels(p.67) are ordered in this way - if this is not the case, that
function will not work properly.

Upon generation of each level(p. 67), the knotvectors of the defining splines will all be rescaled
to the range [0, 1].

Parameters:

method a vector specifying how to generate each level(p.67) in the hierarchy. Each entry
in the vector correspond to one level(p. 67); the first entry in the vector should describe
the coarsest level(p. 67). The details on constructing each level(p. 67) is contained in a
Go::Array of S+C elements, where each element refer to how to approximate the geome-
try(p. 66) splines (all D of them) for the corresponding parameter. This is described by a
(shared pointer(p. 68) to a) Go::GoApproximator object. Read the documentation
on this object to understand how to specify the approximation to be made.

Definition at line 1002 of file MultilevelSplineBlock templates.h.
References MultilevelSplineBlock< S, C, D >::geometrylIsHierarchisable().

7.4.3.15 template<int S, int C, int D> void MultilevelSplineBlock< S,
C, D >::makeResultHierarchy (const std::vector< Go::Array<
boost::shared ptr< Go::GoApproximator< S+C, double > >, S+C > > &
method, int resultID) [inline]

From a result(p.68) base level(p.66) (supposedly present), generate a "hierarchy" of lev-
els(p. 67) that approximates this base level(p. 66).

If such levels(p.67) are already defined, they will be removed. If there is no base level(p. 66)
present in the block(p. 66) for this result(p. 68) (see resultIsHierarchisable()(p.45)), an ex-
ception will be thrown. The levels(p.67) will be defined by spline functions approximating the
original grid at base level(p.66). These spline functions, of the class Go::GoTensorProduct-
Spline, will be approximated using techniques specified by objects deriving from the Go::Go-
Approximator class. For more information about specifying approximation techniques, read the
documentation for that class, as well as the one for the Go::GoTensorProductSpline::fit()
function.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.4 MultilevelSplineBlock< S, C, D > Class Template Reference 43

Note:

Each level(p. 67) in the hierarchy should be progressive more detailed (more accurate) than
the preceding one. This conforms to the idea of "hierarchy", where there is a natural ’ordening’
of the levels(p. 67) from "coarse" to "fine". This orderingf is not verified by this function in
any way, but the user is encouraged to observe it. The setResultPrecision()(p. 46) function
assumes that the levels(p. 67) are ordered in this way - if this is not the case, that function
will not work properly.

Upon generation of each level(p. 67), the knotvectors of the defining splines will all be rescaled
to the range [0, 1].

Parameters:

method a vector specifying how to generate each level(p.67) in the hierarchy. Each entry
in the vector correspond to one level(p.67); the first entry in the vector should describe
the coarsest level(p.67). The details on constructing each level(p.67) is contained in
a Go::Array of S+C elements, where each element refer to how to approximate the
result(p. 68) spline for the corresponding parameter. This is described by a (shared
pointer(p. 68) to a) Go::GoApproximator object. Read the documentation on this
object to understand how to specify the approximation to be made.

resultID the index of the result(p.68) for which we want to generate the hierarchy. Valid
values are from 0 to numResults()(p.44) - 1.

Definition at line 1058 of file MultilevelSplineBlock _templates.h.
References MultilevelSplineBlock< S, C, D >::resultIsHierarchisable().

7.4.3.16 template<int S, int C, int D> int MultilevelSplineBlock< S, C, D
>:numGeometryLevels () const [inline, virtual]

Return the number of geometry(p. 66) levels(p. 67) that this block(p. 66) contains.

Returns:
the number of geometry(p. 66) levels(p. 67) that this block(p. 66) contains

Implements MultilevelBlock< S, C, D > (p.31).
Definition at line 1161 of file MultilevelSplineBlock templates.h.

7.4.3.17 template<int S, int C, int D> int MultilevelSplineBlock< S, C, D
>:numResultLevels (int result) const [inline, virtuall

Return the number of levels(p.67) contained in this block(p.66) to represent a specified re-
sult(p. 68).

Parameters:
\ref result "result" the index of the result(p. 68) for which we want to know the number of
levels(p. 67)

Returns:
the number of levels(p. 67) for the specified result(p. 68)

Implements MultilevelBlock< S, C, D > (p.31).
Definition at line 1169 of file MultilevelSplineBlock templates.h.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

44 Structured Blocks Class Documentation

7.4.3.18 template<int S, int C, int D> int MultilevelSplineBlock< S, C, D
>:uznumResults () const [inline, virtuall

Returns the number of results(p. 68) that this block(p. 66) contains.

The results(p. 68) will always be refered to by using their index number 0 to numResults()(p. 44)
-1

Returns:
the number of results(p.68) that this block(p. 66) contains

Implements Block< S, C, D > (p.18).
Definition at line 1182 of file MultilevelSplineBlock templates.h.

7.4.3.19 template<int S, int C, int D> std::vector< boost::shared ptr<
Go::GeomObject > > MultilevelSplineBlock< S, C, D >::outline (double x
aur_par values) const [inline, virtuall

Returns the outline(p. 67) of the block(p. 66).

The outline(p. 67) is defined as the union of all the block’s 1-interfaces(p.67) (edges), which is
collected, expressed as Go-objects (usually Go::SplineCurve s) and returned as the result(p. 68)
of the function call. This function can be used for all instantiations of the Block(p. 15) template,
provided that S > 0. The (fixed) values for the auxiliary parameters(p.66) are specified by the
user in an C-sized array pointed to by the argument aux par_values.

Parameters:
auz_ par_values points to an array of C double s, defining the values of the auxiliary
parameters(p. 66) for which we want the outline(p.67) of the block(p. 66).

Returns:
a vector of Go-objects (usually Go::SplineCurves) expressing the outline(p.67) of the
block(p. 66) for the specified values for the auxiliary parameters(p. 66).

Implements Block< S, C, D > (p.19).
Definition at line 1231 of file MultilevelSplineBlock templates.h.

7.4.3.20 template<int S, int C, int D> void MultilevelSplineBlock< S, C, D >::read
(std::istream & is, bool ascit = false) [inline, virtual]

Read the block(p.66) from an input stream. This may or may not be a complete definition of
the block(p.66) - it depends on which parts were available from the stream. Read setWrite-
Mode()(p. 47) for more.

Parameters:
28 the input stream

ascit if set to ’true’, the contents will be read in ASCII format, if not, the contents will be
read in BINARY format.
Implements Block< S, C, D > (p.19).
Definition at line 556 of file MultilevelSplineBlock templates.h.

References Go::GoGenericGrid< M, T >:read BINARY(), Go::GoTensorProductSpline< M, T
>:read BINARY(), and Go::GoTensorProductSpline< M, T >::setDataPointer().

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.4 MultilevelSplineBlock< S, C, D > Class Template Reference 45

7.4.3.21 template<int S, int C, int D> bool MultilevelSplineBlock< S, C, D
>:uresultIsHierarchisable (int res) const [inline]

This function reports whether approximations for a given result(p. 68) can be generated from the
information currently present in the block(p. 66).

This class contains functionality for generating a user-defined hierarchy of levels(p. 67) of detail
. The requirement, however, is that there is a base level(p.66) present in the block(p. 66), from
which the other levels(p.67) can be generated. Such a base level(p.66) is supposed to be the
’exact’ representation of the block(p. 66), and is usually set when the block(p. 66) is constructed.
However, it may be that the current block(p. 66) does not contain this base level(p. 66), notably
because the block(p.66) has been read()(p. 44) from a stream that did not provide it. In that
case, the levels(p.67) contained in the block(p.66) cannot be changed.

If there is a base level(p.66) for the indicated result(p. 68) present in the current block(p. 66),
then it is possible to generate approximating levels(p. 67), and this function will return ’true’. In
the opposite case, the return value will be ’false’.

Parameters:
res the index of the result(p. 68) for which we want to know whether it is possible to generate
approximations or not.

Returns:
true or false depending on whether approximating levels(p. 67) can be generated or not.

Definition at line 1294 of file MultilevelSplineBlock templates.h.
Referenced by MultilevelSplineBlock< S, C, D >::makeResultHierarchy().

7.4.3.22 template<int S, int C, int D> const Go::GoTensorProductSpline< S+C,
double > MultilevelSplineBlock< S, C, D >::iresultSplines (int resultID)
const [inline, virtuall

Returns the multivariate(p. 67) spline describing one of the block’s results(p. 68).
Parameters:

resultID The index number of the requested result(p. 68). Valid values are from 0 to num-
Results()(p. 44) - 1.

Returns:
A multivariate(p. 67) spline describing the requested result(p.68) scalar field

Implements Block< S, C, D > (p.19).
Definition at line 945 of file MultilevelSplineBlock _templates.h.

7.4.3.23 template<int S, int C, int D> void MultilevelSplineBlock< S, C, D
>::setGeometryLevel (int lev) [inline, virtuall

Sets the active geometry level(p. 66) to ’lev’.
Parameters:

lev the number of the level(p.67) we want to set as ’active’. Valid values are from 0 to
numGeometryLevels()(p.43) - 1.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

46 Structured Blocks Class Documentation

Implements MultilevelBlock< S, C, D > (p.31).
Definition at line 971 of file MultilevelSplineBlock templates.h.

7.4.3.24 template<int S, int C, int D> bool MultilevelSplineBlock< S, C, D
>::setGeometryPrecision (double prec) [inline, virtuall

If the block(p.66) contains information regarding the intrinsic error for each geometry(p.66)
level(p. 67), this function allows for automatic selection of level(p. 67) for the geometry(p. 66),
based on an error criterion.

The error of the chosen level(p. 67) should be inferior to the given precision, while still choosing a
level(p. 67) containing as little information as possible (as low on detail as possible). If there is no
sufficiently precise level(p.67), the most accurate level(p. 67) is selected, and ’false’ is returned.
On the other hand, if there are sufficiently precise levels(p. 67) present, the least detailed of these
will be chosen, and ’true’ is returned. If the block(p.66) type does not this kind of automatic
level(p. 67) selection, an exception should be thrown.

Parameters:
prec the maximum tolerated error (as compared with the exact representation).

Returns:
‘true’ if it managed to find a suitable level(p. 67), 'false’ if no sufficiently accurate level(p. 67)
could be found.

Implements MultilevelBlock< S, C, D > (p.31).
Definition at line 1130 of file MultilevelSplineBlock templates.h.

7.4.3.25 template<int S, int C, int D> void MultilevelSplineBlock< S, C, D
>::setResultLevel (int resID, int lev) [inline, virtuall

Sets the active level(p. 66) for the result(p.68) indexed 'resID’ to ’lev’.

Parameters:
resID the index of the result(p. 68) for which we want to set the active level(p. 66). This
index should be between 0 and numResults()(p. 44) - 1.

lev the number of the level(p.67) that we want to set as ’active’ for this result(p.68).
This should be between 0 and numResultLevels()(p.43) - 1, where the argument to
numResultLevels()(p.43) is 'resID’.

Implements MultilevelBlock< S, C, D > (p.32).
Definition at line 956 of file MultilevelSplineBlock templates.h.

7.4.3.26 template<int S, int C, int D> bool MultilevelSplineBlock< S, C, D
>::setResultPrecision (int resID, double prec) [inline, virtuall

If the block(p.66) contains information regarding the intrinsic error for each result(p.68)
level(p. 67), this function allows for automatic selection of level(p.67) for a given result(p. 68),
based on an error criterion.

The error of the chosen level(p.67) should be inferior to the given precision, while still choosing a
level(p. 67) containing as little information as possible (as low on detail as possible). If there is no

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.4 MultilevelSplineBlock< S, C, D > Class Template Reference 47

sufficiently precise level(p.67), the most accurate level(p. 67) is selected, and ’false’ is returned.
On the other hand, if there are sufficiently precise levels(p. 67) present, the least detailed of these
will be chosen, and ’true’ is returned. If the block(p.66) type does not this kind of automatic
level(p. 67) selection, an exception should be thrown.

Parameters:
resID the result(p.68) for which we want to set the active level(p. 66)

prec the maximum tolerated error (as compared with the exact representation).

Returns:
‘true’ if it managed to find a suitable level(p. 67), 'false’ if no sufficiently accurate level(p. 67)
could be found.

Implements MultilevelBlock< S, C, D > (p.32).
Definition at line 1108 of file MultilevelSplineBlock templates.h.

7.4.3.27 template<int S, int C, int D> void MultilevelSplineBlock< S, C, D
>::set WriteMode (bool results = true, bool errors = true, bool all_levels
= true, bool use_ float = true) const [inline]

Set the writing mode for the block(p.66), decinding which components should be written to
stream when calling the write()(p.47) function.

This function is provided because the user does not necessarily want to write everything contained
in the block(p.66) to the stream (file or other). For instance, when writing to file, it may be
that she only wants to write the compressed version, without taking care of the estimated errors,
etc.

Parameters:
results - if ’true’, then the block(p.66)’s results(p. 68) will be written

errors - if ’true’, then all error estimates (generated when establishing the block(p.66)’s
levels(p. 67) of detail) will be written.

all_levels - if ’true’, information for all levels(p.67) will be written, if not, then only the
information pertaining to the current level(p.67) is written.

use_ float - if ’true’, the block(p.66)’s grid values / spline coefficients will be written using
float, in order to save space. In the opposite case, the information will be written using
double precision.

Note:
With this function, we set the internal write mode state. This state is mutable, and can be
changed even on const blocks(p. 66).

Definition at line 1322 of file MultilevelSplineBlock templates.h.

7.4.3.28 template<int S, int C, int D> void MultilevelSplineBlock< S, C, D
>:uwrite (std::ostream & o0s, bool ascii = false) const [inline, virtual]
Write the block(p. 66) to an output stream.

How much of the information that is actually written can be regulated with the setWrite-
Mode()(p. 47) function.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

48 Structured Blocks Class Documentation

Parameters:
0s the output stream

ascit if set to ’true’, the contents will be written in ASCII format, if not, the contents will
be written in BINARY format (default).

Implements Block< S, C, D > (p.20).
Definition at line 173 of file MultilevelSplineBlock _templates.h.

References Go::GoGenericGrid< M, T >:write BINARY(), and Go::GoTensorProductSpline<
M, T >:write. BINARY().

The documentation for this class was generated from the following files:

e MultilevelSplineBlock.h
o MultilevelSplineBlock templates.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.5 BlockEnum::ParamConfig< S > Class Template Reference 49

7.5 BlockEnum::ParamConfig< S > Class Template Refer-
ence

An array holding a total of S different ParamState(p. 14) s.

#include <BlockEnum.h>

Public Member Functions

e ParamConfig ()
Default constructor, setting all S ParamState(p. 14) s to RUN.

¢ bool operator== (const ParamConfig &rhs)

Equality operator, returns true if all S ParamState(p.14) s of this object are equal to the
corrsponding ones found in the ’rhs’ object.

e void clear ()
Resets all S ParamState(p. 14) s to RUN.

e void dump (std::ostream &os)

Dumps a textual description of the ParamConfig(p. 49) to an output stream.

7.5.1 Detailed Description
template<int S> class BlockEnum::ParamConfig< S >

An array holding a total of S different ParamState(p. 14) s.

This class is convenient for grouping together the ParamState(p. 14) s that defines a certain
interface(p. 67) of a S-block. Read the section on Block Connectivity(p.2) for more.

Definition at line 65 of file BlockEnum.h.

The documentation for this class was generated from the following files:

¢ BlockEnum.h
e BlockEnum templates.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

50 Structured Blocks Class Documentation

7.6 BlockEnum::ParamConfigEnumeration< S > Class Tem-
plate Reference

Array of S? entries, each holding a ParamConfig(p.49) set upon construction of the array. It
describes all the S® (S-m)-interfaces(p.68) that an S-block has.

#include <BlockEnum.h>

Public Member Functions

e ParamConfigEnumeration ()

Constructor. Fills each of the array’s entries with the ParamConfig(p. 49) for a certain (S-
m)-interface(p. 68).

e void dump (std::ostream &os)

Dumps a testual descrition of the ParamConfigEnumeration(p. 50) to an output stream.

e int entryPoint (int k)

This function return the first entry of the array that contains an (S-k)-interface(p.68) (an
interface(p. 67) with k fized parameters).

7.6.1 Detailed Description
template<int S> class BlockEnum::ParamConfigEnumeration< S >
Array of S entries, each holding a ParamConfig(p.49) set upon construction of the array. It

describes all the S® (S-m)-interfaces(p.68) that an S-block has.

The entries are automatically set upon construction of this object so that they cover all the different
(S-m)-interfaces(p. 68) that exists for an S-block. The first entry is the (S-0)-interface(p. 68)
(the "interior" of the block(p. 66)), the 2.5 following entries represent the (S-1)-interfaces(p. 68),
etc. The O-interfaces(p.67) arrives last in the array.

This array is used to enumerate all different (S-m)-interfaces(p.68) of a block(p. 66), and can
for instance be used to loop through all the interfaces(p.67) (by looping through the entries of
the array).

Definition at line 107 of file BlockEnum.h.

7.6.2 Constructor & Destructor Documentation

7.6.2.1 template<int T> BlockEnum::ParamConfigEnumeration< T
>::ParamConfigEnumeration () [inline]

Constructor. Fills each of the array’s entries with the ParamConfig(p. 49) for a certain (S-m)-
interface(p. 68).

Together, the entries cover all the possible interfaces(p.67) for an S-block.

Definition at line 84 of file BlockEnum templates.h.

References BlockEnum::ParamState.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.6 BlockEnum::ParamConfigEnumeration< S > Class Template Reference 51

7.6.3 Member Function Documentation

7.6.3.1 template<int T> int BlockEnum::ParamConfigEnumeration< T
>:tentryPoint (int k) [inline]

This function return the first entry of the array that contains an (S-k)-interface(p.68) (an
interface(p. 67) with k fixed parameters).

It supposes that the entries of the array are left as they were defined by the constructor of this
object, ie. that the user has not changed them in any way.

Definition at line 75 of file BlockEnum templates.h.

The documentation for this class was generated from the following files:

e BlockEnum.h
e BlockEnum templates.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

52 Structured Blocks Class Documentation

7.7 PlotableGeometry< S, D > Struct Template Reference

Represent the geometry(p. 66) for a fragment of a given block(p. 66).

#include <BlockStructure.h>

Public Attributes

e Go::Array< Go::GoTensorProductSpline< S, double >, D > coords

The D splines defining the geometry(p. 66) of the part of the Block(p. 15) represented with this
object. There is one spline for each spatial dimension.

e SubblockPrmDomain< S > domain

Specify for which parameter domain this PlotableGeometry is valid. ’domain’ is an array of S
STL-pairs of double, defining the minimum and mazimum parameter value for the S diferent
parameters.

7.7.1 Detailed Description
template<int S, int D> struct PlotableGeometry< S, D >

Represent the geometry(p. 66) for a fragment of a given block(p. 66).
This class is only used as a component for defining the PlotableSubblock(p. 54).
Definition at line 60 of file BlockStructure.h.

The documentation for this struct was generated from the following file:

¢ BlockStructure.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.8 PlotableResult< S > Struct Template Reference 53

7.8 PlotableResult< S > Struct Template Reference

Represent a result(p. 68) scalar field for a fragment of a given block(p. 66).

#include <BlockStructure.h>

Public Attributes

e int result number
the block’s index of the result(p. 68) represented by the PlotableResult object

¢ Go::GoTensorProductSpline< S, double > spline

the spline describing the result(p. 68) inside the parametric domain specified by ’domain’

e SubblockPrmDomain< S > domain

Specify for which parameter domain this PlotableResult is valid. ’domain’ is an array of S
STL-pairs of double, defining the minimum and mazimum parameter value for the S different
parameters.

7.8.1 Detailed Description
template<int S> struct PlotableResult< S >

Represent a result(p. 68) scalar field for a fragment of a given block(p. 66).
This class is only used as a component for defining the PlotableSubblock(p. 54).
Definition at line 40 of file BlockStructure.h.

The documentation for this struct was generated from the following file:

e BlockStructure.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

54 Structured Blocks Class Documentation

7.9 PlotableSubblock< S, D > Struct Template Reference

This class represent a "fragment" of a block(p.66), ie. it can be used to evaluate a certain
part of the block’s geometry(p. 66) and (optionally) results(p. 68) for any value of the spatial
parameters(p. 68) that fall within the specified domains.

#include <BlockStructure.h>

Public Attributes

e int block number
the index of the block(p. 66) that this PlotableSubblock represents a part of.

PlotableGeometry< S, D > geometry
Representation of (a fragment of) the geometry(p. 66).

std::vector< PlotableResult< S > > results

Representation of (fragments of) results(p. 68).

Go::Array < std::pair< bool, bool >, S > extremity covered

Array with one entry per spatial parameter(p.68). It reports whether each the two (S-1)-
interfaces(p. 68) specified by locking the corresponding parameter into its MIN or MAX position
are covered by another subblock(p. 69) in the set, or if this subblock(p. 69) should be used to
evaluate the concerned interface(p.67).

o Go::Array< std::pair< bool, bool >, S > borders neighbour

Array with one entry per spatial parameter(p. 68). It reports whether each of the two (S-1)-
interfaces(p. 68) specified by locking the corresponding parameter into its MIN or MAX position
are shared by a neighbour (another block(p. 66)).

7.9.1 Detailed Description
template<int S, int D> struct PlotableSubblock< S, D >

This class represent a "fragment" of a block(p.66), ie. it can be used to evaluate a certain
part of the block’s geometry(p.66) and (optionally) results(p. 68) for any value of the spatial
parameters(p. 68) that fall within the specified domains.

The domain for the geometry(p. 66) and for each of the results(p.68) do not necessarily have to
be equal, so the user has to check individually for the geometry(p. 66) and for each result(p. 68)
whether this PlotableSubblock is "evaluable" at the parameter values she has. This is rather
cumbersome, and it is recommended that all handling of block(p.66) evaluation is handed over
to the utility functions sampleBlockGeometry() and sampleBlockResult(). A PlotableSubblock
representation of one or more blocks(p.66) is obtained by calling the BlockStructure::get-
PlotableRep()(p. 23) function. After the PlotableSubblock s have been obtained, the user could
benefit from the above mentioned utility functions to sample the concerned blocks(p. 66) for any
parametric values (the utility functions browse through a supplied list of PlotableSubblock until
they find the one covering the requested parametric value).

Definition at line 91 of file BlockStructure.h.

The documentation for this struct was generated from the following file:

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.9 PlotableSubblock< S, D > Struct Template Reference

55

e BlockStructure.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

56 Structured Blocks Class Documentation

7.10 SingleLevelSplineBlock< S, C, D > Class Template Ref-
erence

This is a single-level(p. 67) block(p. 66) class that does not support results(p. 68), only geom-
etry(p. 66).

#include <SingleLevelSplineBlock.h>
Inheritance diagram for SingleLevelSplineBlock< S, C, D >::

Block< S, C,D >

T

SingleLevelSplineBlock< S, C, D >

Public Member Functions

e SingleLevelSplineBlock (const double xcoefs, const int xrowlengths, const int *order, bool
k_reg)

This constructor takes an array of grid values, and generates a multivariate(p.67) spline of a
specified order(p. 68). The grid points is used as control points. The knotvectors will be uniform
and may or may not be k-reqular. The knotvector will always run from 0 to 1.

¢ SingleLevelSplineBlock (const SingleLevelSplineBlock &)

Copy constructor.

e virtual Go:BoundingBox boundingBox () const

Returns a bounding box enclosing the geometric area occupied by the block(p. 66).

e virtual void getCornerPosition (const bool *max, const double *C _values, double *res)
const

Function to retrieve the position of a block’s corner(p.66) in geometrical space for a given set
of auxiliary parameters(p.66) (C-parameters).

e virtual const Go::Array< Go::GoTensorProductSpline< S+C, double >, D >
geometrySplines () const

Returns the multivariate(p. 67) splines that define this block’s geometry(p. 66).

e virtual const Go::GoTensorProductSpline< S+C, double > resultSplines (int resultID)
const

Returns the multivariate(p. 67) spline describing one of the block’s results(p. 68).

e Go::SplineSurface surfInterface (int num) const

This function is only specified for S=38. It returns a Go::SplineSurface representation of one of
the 2-interfaces(p.67) of the cube, as defined by its geometry(p. 66).

e virtual std::vector< boost::shared ptr< Go:GeomObject > > outline (double xaux_par_-
values) const

Returns the outline(p. 67) of the block(p. 66).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.10 SingleLevelSplineBlock< S, C, D > Class Template Reference 57

e virtual int numResults () const
Returns the number of results(p. 68) that this block(p.66) contains.

e virtual void write (std::ostream &os, bool ascii=false) const
Write the block(p. 66) to an output stream.

e virtual void read (std:istream &is, bool ascii—=false)

Read the block(p. 66) from an input stream.

7.10.1 Detailed Description
template<int S, int C, int D> class SingleLevelSplineBlock< S, C, D >

This is a single-level(p. 67) block(p. 66) class that does not support results(p. 68), only geom-
etry(p. 66).

It was mostly written for testing purposes, and also to illustrate how the user can tailor her own
block(p. 66) type to her needs.

Definition at line 28 of file SingleLevelSplineBlock.h.

7.10.2 Constructor & Destructor Documentation

7.10.2.1 template<int S, int C, int D> SingleLevelSplineBlock< S, C, D
>::SingleLevelSplineBlock (const double * coefs, const int x rowlengths,
const int * order, bool k_reg) [inlinel

This constructor takes an array of grid values, and generates a multivariate(p.67) spline of a
specified order(p. 68). The grid points is used as control points. The knotvectors will be uniform
and may or may not be k-regular. The knotvector will always run from 0 to 1.

Note:
(Ownership issue): All the coeflicients will be copied into an internal array that the Single-
LevelSplineBlock has ownership of.

Parameters:

coefs pointer to an array storing all the grid’s coefficients. They are stored so that each
D consecutive values are the coordinates for one gridpoint. The grid is supposed to
be multiindexed(p.67) with S+C indexes. The first index should have the lowest
stride(p. 68), and the last index should have the highest. This is maybe best illustrated
with an example: let us consider the case where S=2, C=0 and D = 3. With these values
for S and D, we represent a grid that is a 2-manifold(p. 67) (a surface) embedded in
3D space. The grid is indexed on 7 and j, and each gridpoint p;; has the 3D-coordinates
(@i, Yij, zij). Let us further say that ¢ takes values from 0 to I — 1, and j takes values
from 0 to J — 1. The storage of the gridpoints in the array pointed to by coefs should
be on the form:

200, Y00, 200, 10, Y105 210y -++s 105 YI0, 210, L015 Y01, 2015 -y LIJ, YIJ5 21T

rowlengths pointer to an array of S+C integers, specifying the rowlengths of the grid (num-
ber of values that each index takes). In the example used above, the array pointed to
should contain [I, J].

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

58 Structured Blocks Class Documentation

order should point to an array of S+C integers, specifying the spline order(p. 68) for each
parameter.

k_ reg if this argument is set to ’true’, then the generated knotvectors will be k-regular.

Definition at line 50 of file SingleLevelSplineBlock templates.h.

7.10.3 Member Function Documentation

7.10.3.1 template<int S, int C, int D> Go::BoundingBox SingleLevelSplineBlock<
S, C, D >::boundingBox () const [inline, virtuall

Returns a bounding box enclosing the geometric area occupied by the block(p. 66).

Returns:
the a bounding box enclosing the geometric area occupied by the block(p. 66)

Implements Block< S, C, D > (p.16).
Definition at line 218 of file SingleLevelSplineBlock templates.h.

References Go::GoGenericGrid< M, T >:maxElem(), and Go::GoGenericGrid< M, T >:min-
Elem().

7.10.3.2 template<int S, int C, int D> const Go::Array< Go::GoTensor-
ProductSpline< S+4C, double >, D > SingleLevelSplineBlock< S, C, D
>::geometrySplines () const [inline, virtuall

Returns the multivariate(p. 67) splines that define this block’s geometry(p. 66).

There are D such splines, each expressing the position of the block(p.66) in one spatial dimen-
sion, as a function of the S+C parameters. (For instance, in 3D, we would have one spline
expressing the x-coordinate, another expressing the y-coordinate and a third one expressing the
z-coordinate).

Returns:
A D-sized array containing the multivariate(p.67) splines describing the geometry(p. 66)
of the block(p. 66) in each of the spatial dimensions.

Implements Block< S, C, D > (p.17).
Definition at line 268 of file SingleLevelSplineBlock templates.h.

7.10.3.3 template<int S, int C, int D> void SingleLevelSplineBlock< S, C, D
>::getCornerPosition (const bool x maz, const double x C_walues, double
* res) const [inline, virtuall

Function to retrieve the position of a block’s corner(p. 66) in geometrical space for a given set of
auxiliary parameters(p. 66) (C-parameters).

The block’s corners(p. 66) are defined as its 0-interfaces(p.67) (see Block connectivity(p. 2)).
A corner(p.66) is characterized by all the spatial parameters(p.68) taking up an extremal
value (either 0 or 1). The max argument is used to specify which spatial parameters(p. 68) are
0 and which are 1. It should point to an array of S bools. If maz[i] = true, it means that for

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.10 SingleLevelSplineBlock< S, C, D > Class Template Reference 59

the requested corner(p.66), the spatial parameter(p.68) i is set to 1, else it is set to 0. The
spatial coordinates of the requested corner(p.66) are written to the memory location pointed to
by res. This area should of course be big enough to store D double s.

Parameters:
mazx Pointer to an array of S bool s, specifying whether the corresponding spatial parame-
ter(p. 68) is mazimum (1) or minimum (0) at this corner(p. 66). A value of true means
mazimum.

C wvalues Pointer to an array of C double s, specifying the values of the auxiliary param-
eters(p. 66) to use when evaluating the position of the corner(p. 66) corners.

res pointer to the memory location where the corner(p.66) position (D double s) will be
written. It is the user’s responsibility to allocate enough memory.
Implements Block< S, C, D > (p.17).
Definition at line 240 of file SingleLevelSplineBlock templates.h.

7.10.3.4 template<int S, int C, int D> virtual int SingleLevelSplineBlock< S, C, D
>:numResults () const [inline, virtuall

Returns the number of results(p. 68) that this block(p. 66) contains.
The results(p. 68) will always be refered to by using their index number 0 to numResults()(p. 59)
-1

Returns:
the number of results(p.68) that this block(p. 66) contains

Implements Block< S, C, D > (p.18).
Definition at line 116 of file SingleLevelSplineBlock.h.

7.10.3.5 template<int S, int C, int D> std::vector< boost::shared ptr<
Go::GeomObject > > SingleLevelSplineBlock< S, C, D >::outline (double
* aux_par wvalues) const [inline, virtual]

Returns the outline(p. 67) of the block(p. 66).

The outline(p. 67) is defined as the union of all the block’s 1-interfaces(p. 67) (edges), which is
collected, expressed as Go-objects (usually Go::SplineCurve s) and returned as the result(p. 68)
of the function call. This function can be used for all instantiations of the Block(p. 15) template,
provided that S > 0. The (fixed) values for the auxiliary parameters(p.66) are specified by the
user in an C-sized array pointed to by the argument aux par values.

Parameters:
auz_ par_values points to an array of C double s, defining the values of the auxiliary
parameters(p. 66) for which we want the outline(p. 67) of the block(p. 66).

Returns:
a vector of Go-objects (usually Go:SplineCurves) expressing the outline(p.67) of the
block(p. 66) for the specified values for the auxiliary parameters(p. 66).

Implements Block< S, C, D > (p.19).

Definition at line 311 of file SingleLevelSplineBlock templates.h.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

60 Structured Blocks Class Documentation

7.10.3.6 template<int S, int C, int D> void SingleLevelSplineBlock< S, C, D
>uread (std::istream & is, bool ascii = false) [virtuall

Read the block(p.66) from an input stream.

Parameters:
is the input stream where the block(p. 66) is read from
ascii if the user sets this argument to true, then the block(p.66) will be read in ASCII
format, else it will be read in BINARY format.

Implements Block< S, C, D > (p.19).
Definition at line 189 of file SingleLevelSplineBlock templates.h.

7.10.3.7 template<int S, int C, int D> const Go::GoTensorProductSpline< S+C,
double > SingleLevelSplineBlock< S, C, D >:resultSplines (int resultID)
const [inline, virtuall

Returns the multivariate(p. 67) spline describing one of the block’s results(p. 68).

Parameters:
resultID The index number of the requested result(p. 68). Valid values are from 0 to num-
Results()(p.59) - 1.

Returns:
A multivariate(p. 67) spline describing the requested result(p. 68) scalar field

Implements Block< S, C, D > (p.19).
Definition at line 333 of file SingleLevelSplineBlock templates.h.

7.10.3.8 template<int C, int D> Go::SplineSurface SingleLevelSplineBlock< C, D
>:usurfInterface (int num) const [inline]

This function is only specified for S=3. It returns a Go::SplineSurface representation of one of the
2-interfaces(p. 67) of the cube, as defined by its geometry(p. 66).

There are six sides of the cube, numbered 0 to five. The number of the desired side is given as
argument to the function, which in turn returns the Go::SplineSurface representation.

Parameters:
num choosing which 2-interface(p.67) (side) of the block(p. 66) to generate a surface from.

Valid values are:
Side 0: first parameter locked at minimum value (0)
Side 1: first parameter locked at mazimum value (1)
Side 2: second parameter locked at minimum value (0)
Side 3: second parameter locked at mazimum value (1)
Side 4: third parameter locked at minimum value (0)
Side 5: third parameter locked at mazimum value (1)

Returns:
A Go::SplineSurface representing the desired 2-interface(p.67) of the 3-block

Definition at line 276 of file SingleLevelSplineBlock templates.h.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

7.10 SingleLevelSplineBlock< S, C, D > Class Template Reference 61

7.10.3.9 template<int S, int C, int D> void SingleLevelSplineBlock< S, C, D
>:uwrite (std::ostream & o0s, bool ascii = false) const [virtuall

Write the block(p. 66) to an output stream.

Parameters:
0s the output stream where the block(p. 66) will be written

ascii if the user sets this argument to true, then the block(p. 66) will be written in ASCII
format, else it will be written in BINARY format.

Implements Block< S, C, D > (p.20).
Definition at line 161 of file SingleLevelSplineBlock templates.h.
The documentation for this class was generated from the following files:

o SingleLevelSplineBlock.h
o SingleLevelSplineBlock templates.h

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

62

Structured Blocks Class Documentation

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

Chapter 8

Structured Blocks Page
Documentation

8.1 Model that has become cracked after heavy compression

64 Structured Blocks Page Documentation

8.2 Proofs

We consider an S-block(p.68), parameterized by the unit cube in R° by a homeomor-
phism(p. 67). We want to determine the number of (S-m)-interfaces(p. 68) that the block(p. 66)
has.

An (S-m)-interface(p.68) corresponds to fixing m of the S parameters to their minimum or
maximum value, ie. 0 or 1. The number of ways we can select m parameters from S possible is
(Ti) For a given selection of m parameters, where each of them can take on one of two states (its
minimum or its maximum value), the number of different configurations is 2. The total number
of (S-m)-interfaces(p. 68) is therefore 2 (?).

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

8.3 3D interface illustration

65

8.3 3D interface illustration

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

66

Structured Blocks Page Documentation

8.4 Glossary

Active level

When a block(p.66) contains several levels of detail for a certain result(p.68) or geom-
etry(p. 66), there’s always one that is considered the ’active’ one, the one currently used.
When calling Block::geometrySplines()(p. 17) or Block::resultSplines()(p. 19), it will
be the splines for the currently active level that are returned. See also Level(p. 67).

Auxiliary parameter

See Spatial parameters(p. 68)

Base level

The base level of a block(p. 66)’s geometry(p.66) or result(p. 68) is a representation sup-
posed to be exact (contain all details). It from the base level that all other levels(p.67)
(approzimations) are gemerated, and without access to the base level, such a generation is
not possible.

Block(p. 15)

A block is an entity representing a region of space with 0 or more scalar fields defined on
it. The region of space occupied by the block is homeomorph(p.67) with the unit cube in
R®, where S is the number of spatial parameters(p.68) of the block. This homeomor-
phism(p. 67) is refered to as the block’s geometry(p.66). Moreover, each of the scalar fields
defined on this region are refered to as the block’s results(p. 68). In addition to the S param-
eters on which the homemorphism is defined, the block’s geometry(p. 66) and results(p. 68)
can also depend on C auxiliary parameters(p.66). The base class Block(p. 15) is used to
store and manipulate blocks(p. 66).

Blockstructure

A collection of blocks(p.66) that logically belongs together is called a blockstructure.
Blocks(p. 66) in a blockstructure should obey certain rules: Their geometry(p.66) should
all be of the same dimensionality (1-manifolds(p.67), 2-manifolds(p.67), etc.) No two
Blocks(p.66) in the structure should overlap the same region of space. Moreover, the
Blocks(p.66) can share interfaces(p.67), but in the case they do, the complete inter-
face(p.67) should be shared. The class BlockStructure(p.21) is used to store and manip-
ulate blockstructures.

Corner

A corner of a block(p. 66) is by definition one of the block(p. 66) ’s O-interfaces(p. 67). In
other words, it is a point on the block(p.66) s geometry(p. 66) where all spatial parame-
ters(p. 68) takes an extremal value. The number of different corners on a block(p. 66) with
S spatial parameters(p. 68) is 2°.

Geometric space

The geometric space is the D-dimensional space in which the blocks(p.66)’ geometries are
defined. See also parametric space(p. 67).

Geometry

The geometry of a block(p.66) is informally defined as the region occupied by (or repre-
sented by) the block(p.66) in geometric space. Formally, we can refer to the geometry of a
block(p. 66) as being the homeomorphism(p.67) between parametric space(p.67) and
the manifold(p. 67) it represents in geometric space.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

8.4 Glossary 67

¢ Homeomorphism

Definition that comes from topology. Two geometric objects are called homeomorphic
if there exists a continuous, bijective function mapping points from the first object to the
second. Moreover, this function must have a continuous inverse. Such a function is called a
homeomorphism.

o Interface

A block(p. 66)’s interfaces are those regions on the block(p.66)’s manifold(p. 67) where
one or more of the block(p. 66)’s spatial parameters(p. 68) are fized to its minimum or
mazimum value. This translates as separate parts of the manifold’s(p. 67) boundary. For
a block(p. 66) with S spatial parameters(p. 68), a region on the manifold(p. 67) where m
of these parameters are fized is called o (S-m)-interface(p.68). Mathematically it consitutes
a (S-m)-manifold(p.67). By extension, we can define the block(p.66)’s S-interface (m =
0, no fized parameters) as being the interior of the manifold(p. 67).

e Level

A level is a representation of the block(p.66)’s geometry(p.66) or one of it’s re-
sults(p.68). In ¢ multilevel block(p.67), there might be several levels representing the
same result(p. 68) or geometry(p.66). Each level might differ in the amount of detail it
includes in describing the result(p. 68) or geometry(p.66). The most detailed level is called
base level(p.66), which is supposed to be the "original" or "accurate” representation, to
which oll the other levels are considered "approrimative levels".

o Manifold

Intuitively, the notion of manifold in this documentation is a bounded, S-dimensional volume
with a certain shape, embedded in a D-dimensional geometric space(p.66). Mathemati-
cally speaking, a topological S-manfold is a separated space where every point has an open
neighbourhood homeomorphic(p.67) to an open subset of E™ (Fuclidian n-space). The
interior of a manifold is defined as the set of points having an open neighbourhood home-
omorphic(p.67) to E™, and the boundary of a manifold is defined as the complement of
the interior. The boundary of an S-manifold is always an (S-1)-manifold.

o Multilevel block

A block(p. 66) containing more than one representation (level(p.67)) for its results(p. 68)
and/or its geometry(p. 66).

e Multivariate

" ~ which involves more than one variable" . In this documentation, we speak about mul-

tivariate splines (splines taking more than one parameter, defined as a tensor product
of several univariate splines). We also use the term ’multivariate’ or 'multiindexed’ when
speaking about grids with more than one index.

o Outline

Given an S-block(p. 68), we define it’s outline as the ensemble of points lying on the block’s
1-interfaces(p.67). This can be intuitively interpreted as a set of curves tracing out the
"edges" of the manifold(p. 67) represented by the block(p. 66).

¢ Parametric space

The parametric space we consider here is the unit cube in RM. Our block(p.66)s’ defining
splines takes are parametrized by this ensemble. For convenience, we make the following
distinguishment: We decompose the space RM into R® @ RC, where S+C = M and S < D,
the dimension of the geometric space(p.66) on which our block(p.66)’s geometry(p. 66)
is defined. The S parameters taking values in R° are called the block(p.66)’s spatial
parameters(p. 68), and the C parameters taking values in RC are called the block(p. 66)’s

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

68

Structured Blocks Page Documentation

auxiliary parameters(p.66). The spatial parameters(p. 68) are supposed to be connected
with the block(p. 66)’s geometry(p. 66) through an homeomorphism(p. 67).

Plotable

A plotable representation of a block(p.66)’s geometry(p.66) (or result(p.68)) is in its
simplest form the splines defining the geometry(p.66) (or result(p.68)), as represented
by the currently active level(p.66). However, we often want to make adjustments to the
block(p. 66)s before plotting them, in order to assure continuity between two or more neigh-
bouring Blocks(p.66). In that case, the spline from the currently active level(p.66) might
have to be split up in several smaller splines, each covering a smaller partition of the orig-
inal manifold(p.67). In this case, the plotable representation of this block(p.66) is given
as a collection of smaller, modified splines. In this library, the above happens when the
user calls BlockStructure::getPlotableRep()(p.23). The BlockStructure(p.21) will
split up splines when necessary, and return the plotable representation as a STL-vector of
PlotableSubblock(p. 54).

Result

In the context of this library, o result is a scalar field that is defined on a region of space
represented by the geometry(p. 66) of a block(p.66). A block(p.66) always contain exactly
one geometry(p.66) and an arbitrary number (including 0) of results.

S-block

A block with S spatial parameters(p.68). Must lie in o geometric space(p.66) with
dimension greater or equal to S.

(S-m)-interface

See Interface(p. 67).

shared pointer

The shared pointers used in this library are the boost::shared_ptr<>. They are reference
counted pointers where the object pointed to is automatically deleted when the last shared -
ptr pointing to it goes out of scope.

Spatial parameter

See parametric space(p.67)

Spline order

A spline is a piecewise polynomial where each polynomial piece has the same degree d. The
order of the spline is equal to d + 1.

stride

Stride, the way we refer to that concept in this documentation, is defined as the distance
(difference in memory address) between two elements in an array for two consecutive val-
ues of an index. For a single-indexed array, the values are usually stored consecutively in
memory, which yields a stride of 1. For a bi-indexed array (a "matriz"), indexed by i and
j, each running from 1 to respectively I and J, only one of either i or j can have a minimal
stride of 1, the other typically has a stride equal to the total range of the other. For instance,
the element (i,7) in the above mentioned matriz could be physically indexed in memory as
Memorystart + j * I + i, which yields a stride of 1 for i and a stride of I for j. Generally,
a multiindexed array (usually) has stride 1 for one of its indexes, the other indexes having
strides equal to the product of the ranges of those indexes with lower strides. When optimiz-
ing performance-critical programs, it is important to toke the different strides of multiindezed
arrays into consideration.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

8.4 Glossary 69

e subblock

As the word suggest, a subblock represents a part of a block(p. 66). It is only parametrized on
part of the parametric domain used by it’s "parent” (the block(p. 66) itself) and only covers
the corresponding part of the manifold(p.67) in geometric space(p.66). In this library,
we subdivide an S-block(p. 68) into S® subblocks in the following way: Each of the S spatial
parameters(p. 68) are considered to have three regions, one from 0 to £, one between & and
1—¢&, and one from 1 —¢& to 1. £ is here a "small number" (usually corresponding to a single
knot interval in the block(p. 66)’s base level(p.66) for the given parameter), and is in any
case less than 0.5, so that none of the three domains will ever be empty. The three regions
represent respectively the start, the middle and the end of the parametric domain, and in
this way we can define a total of S® "domain fragments" that each can be represented by one
subblock.

The reason we divide a block(p. 66) into subblock is so that we can locally modify it near the
interfaces(p. 67) it shares with neighbours in order to assure continuity. The division into
subblocks prevents local modifications (like knot insertion or degree raising) of the defining
splines from affecting the whole block(p. 66).

Not all subblocks needs to be ’declared’. A block(p.66) that does not share any of its inter-
faces(p. 67) with neighbours will only have declared it’s "central” subblock (corresponding to
the "middle region" of each parameter), but the central subblock will extend to cover the pa-
rameter domain of the whole block(p.66). This can also happen locally; subblocks that does
not need to be declared for continuity reasons can remain undeclared, and their parametric
domain will be covered by "extending" the nearest declared subblock.

Generated on Fri Mar 18 16:50:55 2005 for Structured Blocks by Doxygen

