TOPAZ *a high-dimensional application of the EnKF to 3D ocean forecasting*

L. Bertino, and the Mohn-Sverdrup Center Nansen Center, Thormoehlensgt. 47, Bergen

eVITA winter school, 30th Jan. 2007, Geilo

Motivation

- Objective:
 - Provide short-term forecasts of physical and biogeochemical parameters targeted to users needs (as in weather forecasting)
 - Public users (Met and environmental agencies)
 - Industry (offshore oil & gas, ship routing)
- Strategy
 - Focus on advanced data assimilation techniques
 - Gradual increase of resolution (as affordable...)
 - Nesting on regions of higher interest

Outline

- Set up of the TOPAZ system
- Examples of ensemble statistics
- Problem dimensions
- Results and Applications
- Perspectives

System description

The TOPAZ system

The TOPAZ model system

- Atlantic and Arctic domain
- Dynamic / thermodynamic ice model
- Weekly assimilation cycle
- Surface boundary conditions

NERSC

ECMWF weather forecast

The ingredients

- 3D numerical ocean model
 - Hybrid Coordinate Ocean model, HYCOM (U. Miami)
 - 18-35 km resolution
 - 22 hybrid layers
- Observations
 - Altimetry, SST (CLS, F)
 - Sea Ice (NSIDC, USA)
 - In-situ (CORIOLIS, F)

Ensemble Kalman filtering a stochastic process

Our Priors

- Initial model error
 - Ocean stratification
 - 10% of the depth of each isopycnal layer
 - Lognormal pdf
- Boundary conditions
 - Random errors in
 - Wind speed and stress
 - Radiative heat fluxes
 - Air temperature
 - Gaussian *pdf*
 - Given standard deviation

Horizontal radius 250 km

- Measurement errors
 - Gaussian *pdf*
 - Sea surface heights
 - Sea surface temperatures
 - Truncated Gaussian
 - Ice concentrations
 - Given standard deviations
 - Horizontal radius 250 km

The Ensemble Kalman filter

- Assuming
 - Gaussian model state variables
 - Gaussian observation variables
 - Unbiased model and observations
- The EnKF applies the least square estimation
 NERSC 100

A parenthesis on geostatistics

- Kriging (linear least square estimation) depends heavily on the error covariance:
 - Its spatial scale (decorrelation)
 - The Spatial Structure of the covariance
 - In particular its behavior at the origin
- Let us see a simple static example
- (Both under Gaussian distributions)

Exponential covariance

- Horizontal scale 50
- Continuous at origin
- Slope at origin
- Field is "rough".

RandomFields library in R

NERSC

by M. Schlather, U. Goettingen

Models

nugget penta power gexponential spherical stable wave whittlematern

exponential

0		
	scale (16.0)	+++++
	nugget (0.0)	+++++
	variance (8.6) +++++
	mean (0.0)	+++++
pract	math. def	math
Vario	Variogram	CovFct

Gaussian covariance

Models

nugget penta power qexponential spherical stable wave whittlematern

gauss

scale (30.0) +++++ nugget (0.0) +++++ variance (8.6) +++++ mean (0.0) +++++ math. def math

Ensemble Statistics

From the TOPAZ system

Ocean dynamics

- Statistical properties such as
 - Spatial range
 - Variance
 - Multivariate Cross-covariance
- .. evolve according to the ocean dynamics
 - in space
 - in time
- Monte-Carlo methods provide an "ensemble approximation" to all instantaneous statistics

Ensemble Covariance

Spatially varying structures

Ensemble Variances Temporal evolution (variance of ice concentrations)

http://topaz.nersc.no

Ensemble Covariances Temporal evolution

Ensemble Covariance

Multivariate structures

Sea surface height & temperature, mix layer depth

Problem dimensions

High dimensionality

The State Space

- 2D variables (400 x 600 grid cells)
 - Barotropic pressure, u/v velocity, ice concentration, ice thickness
- 3D variables (400 x 600 x 22 grid cells)
 - Temperature, salinity, u/v current, layer thickness
- TOTAL: n = 27.600.000 state variables
- 100 members in double precision = 21 Gb
- Next prototype (Due April 2007):
 - 81 million variables, 60 Gb!

NERSC *Ecosystem variables: 2 to 3 times more variable* depending on ecosystem model formulation

The observations

- Sea level anomalies SLA (satellite, radar altimeters)
 - Non linear function of state variables
 - 100.000 observations every week
- Sea-surface temperature SST (satellite, optical)
 - 8.000 observations every week
- Sea-ice concentrations (satellite, microwave)
 - 40.000 observations every week
- TOTAL: m=148.000 obs

 Coming up: in-situ profiles (~500.000 obs.), HR SST (120.000 obs.), HR ice conc. (160.000 obs.) ice drift...

Local analysis

- For each water column (x, y), update with local observations only
 - Local state space <u>n = 115 variables</u> (5x22+5)
 - Local observations <u>m = 49 nearest</u> (within 700km max)
 - Ensemble size <u>N = 100</u> (as usual)

N, m, n are reasonably similar, small matrices
The local analysis loop is *embarrassingly* parallel
The analysis is not necessarily continuous
X₅ is varying with location (x, y).

Computations

Propagation

- 1000 CPU hours / week
- Embarrassingly parallel
- 100x 4 CPU 3hours jobs
- Each job requires 3 Gb
- Interactive submitting
- Completed within 3 days

Analysis

- 6 CPU hours / week
- Sequential, 3 datasets
- 3x 4 CPU 40 min jobs
- Each job requires 25 Gb
- MPI parallelization required for clusters

Results

Ensemble Kalman filtering a stochastic process

Errors depend on observations density December 2003 SST before analysis

Errors depend on observations density December 2003 SST after analysis

Multivariate Assimilation

update - Summer

Ice concentration update

[Lisæter et al. 2003]

Surface salinity update

EnKF setup: Effect of localization Assimilation of ice concentrations

Ice Concentrations assimilation on 19th Sept. 2006

Structure of the measurement errors

Ensemble size

System Applications

Nested systems in

- 1. North Sea (N. Winther/C. Hansen)
- 2. Gulf of Mexico (F. Counillon)
- 3. Barents Sea (I. Keghouche)

Ensemble Forecasting in the Gulf of Mexico

- What is the probability that an eddy will shed next 0.52 week?
- Lines ("spaghetti plot")
 - Model fronts
 - 7 days forecast
- Background
 - Satellite data
 - Ocean color (MODIS)
 - Not assimilated

NERSC [F. Counillon]

Perspectives

Non-Gaussian estimation (case of ecosystem variables)

Coupled HYCOM – bio. models

- A physical ocean model can drive an ecosystem model
 - Re-suspension of nutrients from the sea bottom
 - Blooming of phytoplankton
 - Grazing of phytoplankton by zooplankton
- Ecosystem variables are particularly non-Gaussian

[A. Samuelsen

NERSC C. Hansen]

Net primary productivity (mgC/m3 day)

MUIIII-ƏVGI UI UP UGIILGI Global Ocean Studies - Operational Oceanography

Theoretical problems

- Non-linear models
 - No guarantee of Gaussian distributions
- We can apply the Gaussian assumption, but
 - Is a linear analysis still optimal?
 - Is a linear analysis still unbiased?
- The Gaussian Anamorphosis from geostatistics offers a possible extension

Illustration Idealised case: 1-D ecological model

Characteristics

- Spring bloom model, yearly cycles in the ocean
- Evans & Parslow (1985), Eknes & Evensen (2002)

Anamorphosis (logarithmic transform)

Arbitrary choice, possible refinements (polynomial fit)

Anamorphosis A classical tool from geostatistics

NEID situ concentrations

41

EnKF assimilation results

- Gaussian assumption
 - Truncated H < 0
 - Low H values overestimated
 - "False starts"
- Lognormal assumption
 - Only positive values
 - Errors dependent on values

Conclusions

- Monte-Carlo methods for operational forecasting
- Large state and observations dimensions
- Non-linear and evolutive system
 - Justifies the use of dynamical data assimilation
- Ensemble statistics make sense
 - Prior Initial/Model errors are critical
- EnKF developments needed
 - Non-Gaussian estimation
 - Bias reduction

Improved sampling

