Bayesian modelling and Markov chain Monte Carlo

First winter school in eScience Geilo, Friday February 2nd 2007

Pdf file available from http://www.math.ntnu.no/~haakont/vinterskole/

Håkon Tjelmeland
Department of Mathematical Sciences
Norwegian University of Science and Technology
Trondheim, Norway

Todays plan

- Bayesian statistics
- Bayesian hierarchical modals
- In two examples (one small and one larger)
 - demonstrate Bayesian hierarchical modelling
 - demonstrate how MCMC is the natural computational tool for Bayesian hierarchical settings

• If time:

- demonstrate the flexibility of the Metropolis— Hastings setup
- perfect simulation

Bayesian statistics

- Example (Bayes, 1763):
 - A billiard ball is dropped on the interval [0,1]
 - * it stops at p
 - * assume p is uniformly distributed on [0,1]
 - Drop the billiard ball n new times
 - * record $y_i = 1$ if ball stops to the left of p
 - * $y_i = 0$ otherwise
 - * set $x = \sum_{i=1}^n y_i$
 - * thus $x|p \sim \mathbf{bin}(n,p)$,

$$\mathbf{P}(X = x|p) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots, n$$

- want to estimate p from observed x
- standard estimator for p in binomial distr.:

$$\widehat{p} = \frac{X}{n}$$

- but we know $p \sim \mathbf{Uniform}[0,1]$,

$$\pi(p) = \begin{cases} 1 & \mathbf{for} \ x \in [0, 1], \\ 0 & \mathbf{otherwise} \end{cases}$$

Bayesian statistics (cont.)

• Recall

$$\pi(p) = \begin{cases} 1 & \textbf{for } x \in [0,1], \\ 0 & \textbf{otherwise} \end{cases}$$

$$\mathbf{P}(X=x|p) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots, n$$

• Thus

$$\pi(p|x) = \frac{\pi(p,x)}{\mathbf{P}(X=x)} = \frac{\pi(p)\mathbf{P}(X=x|p)}{\int_0^1 \mathbf{P}(X=x|\tilde{p})\pi(\tilde{p})d\tilde{p}}$$
$$= \frac{p^x(1-p)^{n-x}}{\int_0^1 \tilde{p}^x(1-\tilde{p})^{n-x}d\tilde{p}} = \frac{p^x(1-p)^{n-x}}{B(x+1,n-x+1)}$$

• This is a beta-distribution, $\mathcal{B}(x+1, n-x+1)$, with

$$\mathbf{E}[p|x] = \frac{x+1}{n+2}$$

• Natural estimator for p

$$\widehat{p} = \frac{X+1}{n+2}$$

Bayesian statistics (cont.)

- ullet In example: p is a stochastic variable because it is the result of a stochastic experiment
- Bayesian modelling: consider parameters as stochastic variables also when their value is not the result of a stochastic experiment
- Another (toy) example:
 - I have a dice, let p: probability of getting a six
 - Consider p as a stochastic variable, you don't know it is a proper dice
 - what distribution would you assign to p?

 \bullet we roll the dice n times, let x: number of sixes

$$\mathbf{P}(X = x|p) = \binom{n}{x} p^x (1-p)^{n-x}, \text{ for } x = 0, 1, \dots, n$$

Bayesian statistics (cont.)

• Recall

$$\mathbf{P}(X = x|p) = \binom{n}{x} p^x (1-p)^{n-x}, \text{ for } x = 0, 1, \dots, n$$

• Assume $p \sim \mathcal{B}(\alpha, \beta)$,

$$\pi(p) = \frac{1}{\mathbf{B}(\alpha, \beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

• This gives

$$\pi(p|x) = \frac{\pi(p,x)}{\mathbf{P}(X=x)} \propto \pi(p)\mathbf{P}(X=x|p)$$

$$\propto p^{\alpha-1}(1-p)^{\beta-1}p^{x}(1-p)^{n-x}$$

$$= p^{\alpha+x-1}(1-p)^{\beta+n-x-1}$$

• Thus $p|x \sim \mathcal{B}(\alpha + x, \beta + n - x)$ and

$$\mathbf{E}[p|x] = \frac{\alpha + x}{\alpha + \beta + n}$$

• **Observed** n = 100, x = 26:

 $\mathbf{E}[p|x] = 0.265$

$$\mathbf{E}[p|x] = 0.255$$

Interpretation of probability

• Frequentist: Probability of event A is

$$\mathbf{P}(A) = \lim_{n \to \infty} \frac{m}{n}$$

where m is # times A has occurred in n identical and independent trials

- Bayesian (subjective): Probability of event A, P(A), is a measure of someone's degree of belief in the occurrence of A.
 - different persons may have different P(A)

Prior and posterior distribution

- Prior distribution: $\pi(\theta)$
 - a measure of our belief about the value of θ before we have observed the data, based on prior information/experience
- Observation and Likelihood: $f(x|\theta)$
 - observed value x, and its probability distribution given θ
- Posterior distribution: $\pi(\theta|x)$
 - a measure of our belief about the of value of θ after we have observed the data x, based on prior information/experience and the observed data x
 - Bayes theorem

$$\pi(\theta|x) = \frac{\pi(\theta, x)}{\pi(x)} \propto \pi(\theta, x) = \pi(\theta) f(x|\theta)$$

Conjugate priors

- In examples: posteriors available on closed form
 - this is because we have used a *conjugate* prior
- binomial conjugate prior
 - $-x|p \sim \mathbf{binomial}(n,p)$
 - $-p \sim \mathbf{beta}(\alpha, \beta)$
 - $-p|x \sim \mathbf{beta}(\cdot, \cdot)$
- normal (mean) conjugate prior

$$-x_1,\ldots,x_n|\mu\sim\mathbf{N}(\mu,\sigma_0^2)$$

$$-\mu \sim \mathbf{N}(\mu_0, \tau^2)$$

$$-\mu|x_1,\ldots,x_n\sim\mathbf{N}(\cdot,\cdot)$$

• normal (variance) conjugate prior

$$-x_1,\ldots,x_n|\sigma^2\sim\mathbf{N}(\mu_0,\sigma^2)$$

$$-\sigma^2 \sim (IG)(\alpha,\beta)$$

$$-\sigma^2|x_1,\ldots,x_n\sim\mathbf{IG}(\cdot,\cdot)$$

- and many more
- Conjugate priors often used also in hierarchical Bayesian models enable Gibbs updates

Hierarchical Bayesian models

- A simple example (from George et al., 1993)
 - Analysis of 10 power plant pumps
 - $-x_i$, t_i : number of failures for pump i and length of operation time on that pump (in 1000 hours)
 - Modelling:
 - * $x_i | \theta_i \sim \mathbf{Poisson}(\theta_i t_i)$
 - * conjugate prior for θ_i

$$\theta_i | \alpha, \beta \sim \mathbf{Gamma}(\alpha, \beta)$$

* hyper-prior distribution on α and β

$$\alpha \sim \mathbf{Exp}(1.0)$$
, $\beta \sim \mathbf{Gamma}(0.1, 1.0)$

- graphical model:

- observed: x_1, \ldots, x_n
- posterior distribution of interest:

$$\pi(\alpha, \beta, \theta_1, \dots, \theta_{10} | x_1, \dots, x_{10})$$

• Graphical model

• Posterior distribution

$$\pi(\alpha, \beta, \theta_1, \dots, \theta_{10} | x_1, \dots, x_{10}) \propto \pi(\alpha, \beta, \theta_1, \dots, \theta_{10}, x_1, \dots, x_{10})$$
$$= \pi(\alpha)\pi(\beta)\pi(\theta_1 | \alpha, \beta) \cdot \dots \cdot \pi(\theta_{10} | \alpha, \beta)\pi(x_1 | \theta_1) \cdot \dots \cdot \pi(x_{10} | \theta_{10})$$

- Single-site Metropolis–Hastings algorithm:
 - for i = 1, ..., 10 update θ_i with Gibbs $\pi(\theta_i | \alpha, \beta, \theta_{-i}, x_1, ..., x_{10}) \propto \pi(\alpha, \beta, \theta_1, ..., \theta_{10}, x_1, ..., x_{10})$ $\propto \pi(\theta_i | \alpha, \beta) \pi(x_i | \theta_i)$
 - * this is a gamma distribution
 - update β with Gibbs

$$\pi(\beta|\alpha, \theta_1, \dots, \theta_{10}, x_1, \dots, x_{10}) \propto \pi(\alpha, \beta, \theta_1, \dots, \theta_{10}, x_1, \dots, x_{10})$$
$$\propto \pi(\beta)\pi(\theta_1|\alpha, \beta) \cdot \dots \cdot \pi(\theta_{10}|\alpha, \beta)$$

- * this is a gamma distribution
- update α with a Metropolis-Hastings proposal * for example: random walk proposal

• Data:

Pump	1	2	3	4	5	6	7	8	9	10
t_i	94.3	15.7	62.9	126	5.24	31.4	1.05	1.05	2.1	10.5
x_i	5	1	5	14	3	19	1	1	4	22

• Trace plots

ullet Convergence in less than 500 iterations

• Posterior density plots

ullet Posterior mean for $heta_i$ compared to x_i/t_i

parameter	posterior mean	x_i/t_i
θ_1	0.0598	0.0530
$ heta_2$	0.1017	0.0636
$ heta_3$	0.0892	0.0795
$ heta_4$	0.1157	0.1111
$ heta_5$	0.6011	0.5725
θ_6	0.6095	0.6051
$ heta_7$	0.8910	0.9524
$ heta_8$	0.8928	0.9524
$ heta_9$	1.5867	1.9047
$ heta_{10}$	1.9901	2.0952

Microarray data example

- Joint work with Rob Scharpf, Giovanni Parmigiani and Andrew Nobel
- Example include
 - problem description
 - Bayesian model formulation
 - Metropolis-Hastings algorithm
 - convergence analysis
 - presentation of results
- DNA contains genes (about 30,000 in humans)

• A gene can be more or less turned on, *expressed*, in a cell

- Gene expression: the process by which a gene's coded information is converted into the structures present and operating in the cell
- Can measure the amount of mRNA
- One goal: Find genes that are differentially expressed in (for example) breast cancer cells and healthy breast cells, or in breast cancer cells of two different (sub)types of cancer

• DNA microarrays: A high throughput technology for measuring the gene expression of thousands of genes for tissue samples

- Different technologies exist even with the same technology measurements from different labs are not comparable
 - measure difference to a reference tissue

• Focus here: Use microarray data from several studies to find genes that are differentially expressed

- Sources of variation in data
 - biology
 - technology
 - observation noise
- Note:
 - # genes is large, thousands
 - # samples is small, 10 200

- Different approaches to merge information from several studies
 - normalise and combine studies
 - * then analyse as one data set
 - meta-analysis
 - * combine information from primary statistics
 - * for example *t*-statistics
 - joint model for data from all studies
 - * model variation caused from both biology and technology

• Notation:

- $-p = 1, \dots, P$: study (or platform)
- -g = 1, ..., G: gene
- $-s = 1, ..., S_p$: sample
- $-x_{qsp}$: expression value
- $-\psi_{sp} \in \{0,1\}$: two possible conditions

• Graphical model

- $\delta_g \in \{0, 1\}$: indicator for differential expression.
- Likelihood:

$$-\mathbf{if}\ \delta_g = 0$$

$$x_{qsp} = \nu_{qp} + \varepsilon_{qsp}$$

$$x_{gsp} = \begin{cases} \nu_{gp} - \Delta_{gp} + \varepsilon_{gsp} & \text{if } \psi_{sp} = 0, \\ \nu_{gp} + \Delta_{gp} + \varepsilon_{gsp} & \text{if } \psi_{sp} = 1. \end{cases}$$

- different variance for $\psi_{sp} = 0$ and $\psi_{sp} = 1$

$$\mathbf{Var}[arepsilon_{gsp}] = \left\{ egin{array}{ll} \sigma_{gp}^2 \cdot arphi_{gp} & \mathbf{if} \ \psi_{sp} = 0, \ rac{\sigma_{gp}^2}{arphi_{gp}} & \mathbf{if} \ \psi_{sp} = 1. \end{array}
ight.$$

- ullet Prior for δ_g
 - assume $\delta_1, \ldots, \delta_G$ apriori independent given ξ .

$$\mathbf{P}(\delta_g = 1|\xi) = \xi.$$

– apriori $\xi \sim \mathbf{Uniform}[0,1]$.

- Priors for $\boldsymbol{\nu}_g = (\nu_{g1}, \dots, \nu_{gP})^T$ and $\boldsymbol{\Delta}_g = (\Delta_{g1,\dots,gP})^T$ $\boldsymbol{\nu}_g |_{\text{hyper-parameters}} \sim \mathbf{N}(0, \Sigma_g)$ $\boldsymbol{\Delta}_g |_{\text{hyper-parameters}} \sim \mathbf{N}(0, R_g)$
 - model variances and correlations separately

$$(\Sigma_g)_{pp} = \gamma^2 \tau_p^2 (\sigma_{gp}^2)^{a_p}$$
 and $(R_g)_{pp} = c^2 \tau_p^2 (\sigma_{gp}^2)^{b_p}$

$$\frac{(\Sigma_g)_{pq}}{\sqrt{(\Sigma_g)_{pp}(\Sigma_g)_{qq}}} = \rho_{pq} \quad \text{and} \quad \frac{(R_g)_{pq}}{\sqrt{(R_g)_{pp}(R_g)_{qq}}} = r_{pq}$$

- * τ_p^2 : relative scale for study p; $\tau_1^2 \cdot \ldots \cdot \tau_P^2 = 1$
- * $a_p, b_p \in [0, 1]$
- * hyper-priors on $a, \rho, \gamma^2, \tau^2, c^2, r, b, \sigma^2$ and φ

• Gibbs updates possible for many parameters

$$-\xi$$
, δ_g , γ^2 , c^2 , ν_{gp} , Δ_{gp}

- First try: update each parameter separately
 - gives very slow convergence/mixing
 - strong dependence between some parameters
- Next try: introduce block updates
 - correlation matrix $[\rho_{pq}]$ and γ^2
 - propose new ρ_{pq} by

$$\tilde{\rho}_{pq} = (1 - \varepsilon)\rho_{pq} + \varepsilon T_{pq}.$$

- propose γ^2 from full conditional.
- accept/reject $[\tilde{
 ho}_{pq}]$ and $\tilde{\gamma}^2$ jointly
- ullet Similar block update for $[r_{pq}]$ and c^2

- More block updates
 - $-\delta_g$ and Δ_g
 - propose to change value for δ_g

$$\tilde{\delta}_g = 1 - \delta_g.$$

- propose Δ_g from full conditional
- $-\operatorname{accept/reject}\ ilde{\delta}_g\ \operatorname{and}\ ilde{oldsymbol{\Delta}}_g\ \operatorname{jointly}$
- Last block update
 - $-c^2$ and Δ_g for genes with $\delta_g = 0$
 - block Gibbs update for these parameters
- Resulting algorithm seems to have good convergence/mixing properties
- Algorithm contains several tuning parameters, performance not very sensitive to the values of these

- Alternative methods
 - (estimated) posterior probability for differential expression

$$S_g = \frac{1}{n} \sum_{i=1}^n \delta_g^{(i)}$$

- t-score: combine t-statistics
- SAM-score: combine SAM-statistics
- Choi
- Test for differential expression: For statistic S and a threshold t > 0, use $|S_g| > t$ as a test for $\theta_g = 1$.
- Summing over $g = 1, \ldots, G$ gives a 2×2 table

• ROC curve:

$$\mathbf{FPR}(t) = \frac{\mathbf{FP}(t)}{\mathbf{TN}(t) + \mathbf{FP}(t)} \quad \mathbf{vs.} \quad \mathbf{TPR}(t) = \frac{\mathbf{TP}(t)}{\mathbf{FN}(t) + \mathbf{TP}(t)}$$

• Simulation study: simulate data from model

25 samples

- Area under curve (AUC)
 - for different number of samples and parameter values

- Real data from three studies
 - -3,171 common genes.
 - Use adenocarcinoma samples.
 - For each study: split samples (or subset) in two at random.
 - Simulate $\delta_g, g = 1, \ldots, G$.
 - Simulate offsets $\Delta_{g1}, \ldots, \Delta_{gP}$
 - Make simulated data set by adding/subtracting the Δ 's from the observed values.

26 and 50 samples 8 samples s31 s29 s27 8 s25 s36 s23 s21 s19 公 s34 s15 s13 s11 0₫ Δ s35 s7 s5 s3 0.60 0.65 0.70 0.80 0.85 0.90 0.80 0.85 0.90 0.95

Microarray example — closing remarks

- Algorithm specification an iterative process
 - tuning parameters
 - update types
- Model specification may be iterative process
- Model dependencies via the hierarchical model
- Bayesian hierarchical models and MCMC are modular — ideal for object oriented programming
 - one object for each node in graphical model
 - one object for each update type

• Note:

- the probabilities/densities in the acceptance probability may be very small/large
- all probability calculations should be done on a log scale to avoid numerical problems
- $-U(x) = -\ln(\pi(x))$: potential, energy