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Todays plan

e Bayesian statistics
e Bayesian hierarchical modals
e In two examples (one small and one larger)

— demonstrtate Bayesian hierarchical modelling

— demonstrate how MCMUC is the natural com-
putational tool for Bayesian hierarchical set-
tings

e If time:

— demonstrate the flexibility of the Metropolis—
Hastings setup

— perfect simulation



Bayesian statistics
e Example (Bayes, 1763):

— A billiard ball is dropped on the interval [0, 1]

* it stops at p

* assume p is uniformly distributed on [0, 1]

— Drop the billiard ball n new times
* record y; = 1 if ball stops to the left of p
* 1; = 0 otherwise

* set x =" |y
x thus z|p ~ bin(n, p),

n

P(X—a:|p)—( >px(1—p)”x,a:—0,1,...,n

X

— want to estimate p from observed x

— standard estimator for p in binomial distr.:

X

p=—
n

— but we know p ~ Uniform|0, 1],

(p) = 1 for x €0, 1],
)= 0 otherwise



Bayesian statistics (cont.)

e Recall

(p) = 1 for x €0, 1],
)= 0 otherwise

n i n—=x
P(X—xp)—(x)p(l—p) ,r=0,1,...,n

e Thus

m(p, x) 7(p)P(X = z|p)

m(plz) = P(X =z) [ P(X = z|p)n(p)dp

0

px(l _ p)n—x B px(l _ p)n—x

[l —pyrdp  Ble+1ln—z+1)

e This is a beta-distribution, B(x +1,n —z + 1), with

r+1

Elp|lz] = ——

e Natural estimator for p

X +1
n —+ 2

D=

W



Bayesian statistics (cont.)

e In example: p is a stochastic variable because it
is the result of a stochastic experiment

e Bayesian modelling: consider parameters as stochas-
tic variables also when their value is not the result
of a stochastic experiment

e Another (toy) example:
— I have a dice, let p: probability of getting a six

— Consider p as a stochastic variable, you don’t
know it is a proper dice

— what distribution would you assign to p?

d o o o
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e we roll the dice n times, let r: number of sixes

P(X =zx|p) = (Z)px(l—p)”x,forx—(),l,...,n



Bayesian statistics (cont.)

e Recall

P(X =zx|p) = (Z)px(l—p)"x,fora:—(),l,...,n

e Assume p ~ B(a, (),

e This gives

m(plr) = o 7(p)P(X = z|p)

x p* 71— p)? (1 —p)

n—x

atz—1 (1 . )ﬁ+n—x—1

= P p
e Thus p|z ~ Bla+ 2,8+ n —x) and
a—+T

a+B+n
e Observed n = 100, x = 26:

E[p|z] =

E[p|z] = 0.265 E[p|z] = 0.255 E[p|z] = 0.230 E[p|z] = 0.183
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Interpretation of probability

e Frequentist: Probability of event A is
m

P(A) = lim —

n—oo M,

where m is # times A has occurred in n identical
and independent trials

e Bayesian (subjective): Probability of event A, P(A),
is a measure of someone’s degree of belief in the
occurrence of A.

— different persons may have different P(A)



Prior and posterior distribution

e Prior distribution: 7(0)

— a measure of our belief about the value of 6
before we have observed the data, based on
prior information/experience

e Observation and Likelihood: f(x|0)

— observed value x, and its probability distribu-
tion given 0

e Posterior distribution: 7 (0|z)

— a measure of our belief about the of value of
0 after we have observed the data x, based on
prior information /experience and the observed
data z

— Bayes theorem

7(0]z) =



Conjugate priors
e In examples: posteriors available on closed form

— this is because we have used a conjugate prior

e binomial conjugate prior

— z|p ~ binomial(n, p)
—p beta(&7 6)
— plz ~ beta(-, )

e normal (mean) conjugate prior

— 1, ... Tl ~ N(p, 07)
— N(:UJ077_2)
— ey, T, ~ N(- )

e normal (variance) conjugate prior

— 21, ..., Ty]0% ~ N(ug, 0?)
— o0’ ~ (IG)(a,B)

— oz, .., 2, ~ IG(, )
e and many more

e Conjugate priors often used also in hierarchical
Bayesian models — enable Gibbs updates



Hierarchical Bayesian models

e A simple example (from George et al., 1993)

— Analysis of 10 power plant pumps

— x;, t;: number of failures for pump ¢ and length
of operation time on that pump (in 1000 hours)

— Modelling:
* x;|0; ~ Poisson(0;t;)

* conjugate prior for 0,
0;|a, B ~ Gammal(a, [3)
* hyper-prior distribution on o and

a ~ Exp(1.0) , f ~ Gamma(0.1,1.0)

— graphical model:

— observed: x1,...,7,

— posterior distribution of interest:

7'('(04,6, 917 .. 7610‘.171, e 73310)
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A simple example (cont.)

e Graphical model

e Posterior distribution
(e, 8,01, ...,00|T, ..., x10) < w(a, B,01,...,010,T1,...,210)
= w(a)m(B)m(01|a, B)-. . ..w (01|, B)w(x1|61)-. . -7 (x10]610)
e Single-site Metropolis—Hastings algorithm:
—for 1 =1,...,10 update 0, with Gibbs
(0o, 8,0, 21, ..., x10) X (v, 3,01, ..., 010,21, .., 210)
x 7(0;| e, B)m(:]6;)
* this is a gamma distribution

— update (# with Gibbs

7-(-(6‘047917'"7(91075617"'75610) O<W(&aﬁaela"'79107x17"'7x10)

x 7(B)w(bh|a, B) - ... w(O1]a, B)

* this is a gamma distribution

— update a with a Metropolis—Hastings proposal

* for example: random walk proposal
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A simple example (cont.)
e Data:

Pump | 1 2 3 4 D § 7 8 9 10

i 94.3 15.7 629 126 5.24 31.4 1.05 1.05 2.1 10.5

T 5 1 5 14 3 19 1 4 22

e Trace plots
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e Convergence in less than 500 iterations
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A simple example (cont.)

e Posterior density plots
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A simple example (cont.)

e Posterior mean for 6, compared to z;/t;

parameter | posterior mean | r; / t;
0, 0.0598 0.0530
0 0.1017 0.0636
03 0.0892 0.0795
0, 0.1157 0.1111
05 0.6011 0.5725
O 0.6095 0.6051
0, 0.8910 0.9524
g 0.8928 0.9524
0y 1.5867 1.9047
010 1.9901 2.0952
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Microarray data example

e Joint work with Rob Scharpf, Giovanni Parmi-
giani and Andrew Nobel

e Example include

— problem description

— Bayesian model formulation

— Metropolis—Hastings algorithm
— convergence analysis

— presentation of results

e DNA contains genes (about 30,000 in humans)

DNA the molecule of life

Trillions of cells
Each cell:

46 human
chromosomes

2 meters of
DNA

3 billion DNA
subunits (the
bases: A, T, C, G)

Approximately
30,000 genes
code for proteins
that perform most
life functions

.

Y-GG 01-0085
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Microarray data example (cont.)

e A gene can be more or less turned on, expressed,
in a cell

Codon

[ . o - : G ; . I'I- " o
B _I_I 5 G i '. 'y iy :
' ? 9o
; o . Transter ANA
. ; 2.

e Gene expression: the process by which a gene’s
coded information is converted into the struc-
tures present and operating in the cell

e Can measure the amount of mRNA

e One goal: Find genes that are differentially ex-
pressed in (for example) breast cancer cells and
healthy breast cells, or in breast cancer cells of
two different (sub)types of cancer
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Microarray data example (cont.)

e DNA microarrays: A high throughput technology
for measuring the gene expression of thousands of
genes for tissue samples

= - excitation .
cDNA microarray experiment scanning

laser 2 \ \Z laser 1

cDNA clones
(probes)

PCR product amplification
purification

printing

mRNA target

‘ overlay images and normalise ‘

T ¥

‘ﬁse target
to microarray l

analysis
Copied from talk by Terry Speed at http:fwww.ipam.ucla.edufprogramsfg2000fgt_tspeed?. ppt

e Different technologies exist — even with the same
technology measurements from different labs are
not comparable

— measure difference to a reference tissue
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Microarray data example (cont.)

e Focus here: Use microarray data from several
studies to find genes that are differentially ex-
pressed

® Sources of variation in data

— biology
— technology

— observation noise

e Note:

— # genes is large, thousands

— # samples is small, 10 — 200
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Microarray data example (cont.)

e Different approaches to merge information from
several studies

— normalise and combine studies

* then analyse as one data set

— meta-analysis
* combine information from primary statistics

* for example t-statistics

— joint model for data from all studies

% model variation caused from both biology
and technology

e Notation:
—p=1,...,P: study (or platform)
—g=1,...,G: gene
—s=1,...,5,: sample
— T, €xXpression value

— 1), € {0,1}: two possible conditions
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Microarray data example (cont.)

e Graphical model

17
O e @3

e §, € {0,1}: indicator for differential expression.
e Likelihood:
—if 9, =0
Tgsp = Vgp T Egsp
—if §, =1
I Agp+egsp 1 g =0,
b Vgp + Dgp+4sp 1 gy = 1.
— different variance for ¢, =0 and 9, =1
o2 - if ¢y, =0
p " Pap sp = Vs
Var|e )| = ngp . B
B if ¢, = 1.

Pap
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Microarray data example (cont.)

eeaﬁm‘:e/@ §
0 a?e O

e Prior for o,

— assume 01, ..., ) apriori independent given &.

P (o, =1[§) = &.

— apriori ¢ ~ Uniform|0, 1].
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Microarray data example (cont.)

47
oG eg

e Priors for v, = (v, ..., I/gp)T and A, = (A, gp)T
Vg‘ hyper-parameters ~ N(O, Eg)

Ag| hyper-parameters ~v ]N'(O7 Rg)
— model variances and correlations separately

(B9),, = 7°7)(0y,)"  and  (Ry),, = *7)(0,)"

(Xg)pg —p, and (Rg)pq .
vV (Z0)(Eg) g V (Ry)pp(Ry)gq
% 7. relative scale for study p; 77 -... 75 =1
* a,, b, € [0, 1]

* hyper-priors on a, p, v*, 7%, ¢*, r, b, 0° and ¢
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Microarray data example (cont.)

17
oNCcamR e eg

e Gibbs updates possible for many parameters

2
s Vgps Agp

- &, 597 /727 C
e First try: update each parameter separately

— gives very slow convergence/mixing

— strong dependence between some parameters

e Next try: introduce block updates

— correlation matrix [p,,] and »?

— propose new p,, by

ppg = (1 = €)ppg + €Ty
— propose v* from full conditional.

— accept/reject [p,,] and §* jointly

e Similar block update for [r,,] and ¢’
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Microarray data example (cont.)

17
O e eg

e More block updates
— 0, and A,
— propose to change value for ¢,
0, =1—06,.
— propose A, from full conditional
— accept/reject 6, and A, jointly
e Last block update
— ¢ and A, for genes with §, =0

— block Gibbs update for these parameters

® Resulting algorithm seems to have good conver-
gence/mixing properties

e Algorithm contains several tuning parameters, per-
formance not very sensitive to the values of these
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Microarray data example (cont.)

e Alternative methods

— (estimated) posterior probability for differen-
tial expression

1 =
5925255)
1=1

— t-score: combine t-statistics
— SAM-score: combine SAM-statistics
— Choi

e Test for differential expression: For statistic S
and a threshold ¢ > 0, use |S,| > ¢ as a test for

0, = 1.
® Summing over g =1,...,G gives a 2 x 2 table
0=0|0=1
S| >t| FP(t) | TP(¢)
S| <t | TN(t) | FN(¢)
e ROC curve:
FP(t TP(t
FPR(t) = ®) vs. TPR(t) = )

- TN(t) + FP(¢) - FN(t)+TP(t)
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Microarray data example (cont.)

e Simulation study: simulate data from model

true positive rate

true positive rate

50 samples

1.0
0.8
0.6
0.4 -
0.2
0.86 Bayesian
0.831 Choi
0.827 t
0.0 0.826 SAM
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
false positive rate
25 samples
1.0
0.8
0.6
0.4
0.2
0.778 Bayesian
0.751 SAM
0.751 Choi
0.0 0.748 t
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

false positive rate

26



Microarray data example (cont.)

e Area under curve (AUC)

— for different number of samples and parameter
values

o t

O SAM

< Choli

A Bayesian

ag 4 DE = A

lin12 —J G A
lin11 — > A
in10 OAN
ling | = A
ling A

lin7 — 2> yaN

lin6 | & A

lin5 —| => A

lind o A

lin3 | C A

lin2 ¢ A

fint o O o A
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Microarray data example (cont.)

e Real data from three studies

— 3,171 common genes.

— Use adenocarcinoma samples.

— For each study: split samples (or subset) in

— Simulate 0,9 =1,...

two at random.

.G

— Simulate offsets A, ..., Ayp

— Make simulated data set by adding/subtracting
the A’s from the observed values.

26 and 50 samples 8 samples
DE o OA avg | DE 0 o A
= A
o O A
o <9A N 536 54
A A
o
0 O A s34 @
& o
@ A@A s35 O@A
o oA
0o A8
DA
O A O 33 70 <>o A

0.60

0.65

0.70

0.75

0.80

0.85

0.90 0.80 0.85
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Microarray example — closing remarks

e Algorithm specification an iterative process
— tuning parameters
— update types
e Model specification may be iterative process
e Model dependencies via the hierarchical model

e Bayesian hierarchical models and MCMC are mod-
ular — ideal for object oriented programming

— one object for each node in graphical model

— one object for each update type

e Note:

— the probabilities/densities in the acceptance
probability may be very small/large

— all probability calculations should be done on
a log scale to avoid numerical problems

— U(z) = —In(m(z)): potential, energy
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