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Some repetition

• Given target distribution: π(x), x ∈ R
N

• Want to understand the properties of π(x)

µf = E[f(x)] =

∫
f(x)π(x)dx

– or what is the probability distribution of f(x)?

• Generate realisations x1, . . . , xn from π(x)

µ̂f =
1

N

N∑

i=1

f(xi)

– or make a histogram of f(x1), . . . , f(xn)

• Example: Ising model, x = (x1, . . . , xN), xi ∈ {0, 1}

π(x) = c exp



−β

∑

i∼j

I(xi 6= xj)





– let

f1(x) =
1

N

N∑

i=1

I(xi = 1) and f2(x) =
1

N

∑

i∼j

I(xi = xj)

– Note: because of symmetry E[f1(x)] = 1/2
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Some repetition (cont.)

• Note: In principle we can compute

E[f2(x)] =
∑

x

f2(x)π(x)

– but the sum has 2200·200 ≈ 1012041 terms

– and to find the normalising constant of π(x) we

need to compute a sum with the same number

of terms

• So in practice it is not possible (in my lifetime)
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Some repetition (cont.)

• Realisations from π(x) with β = 0.87

• Emperical mean values

µ̂f1
= 0.5034 and µ̂f2

= 0.665

• Histograms
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Some repetition (cont.)

• Metropolis–Hastings transition kernel

P(y|x) = Q(y|x)α(y|x) , y 6= x

α(y|x) = min

{
1,

π(x)Q(x|y)

π(y)Q(y|x)

}

• Metropolis–Hastings algorithm

– generate initial state x0 ∼ f(x0)

– for i = 1, 2, . . .

∗ propose potential new state yi ∼ Q(yi|xi−1)

∗ compute acceptance probability α(yi|xi−1)

∗ generate ui ∼ Uniform(0, 1)

∗ if ui ≤ α(yi|xi−1) accept yi, i.e. set xi = yi,

otherwise reject yi and set xi = xi−1

• Next question: What Q(y|x) to use?

– simple choices is often ok — but not always
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Independent proposal MH

• Target density: π(x), x ∈ R
N

• Proposal density: Q(y|x) = q(y)

– does not depend on current state x

– q(y) is an approximation to π(x)

• Toy example

– target distribution: x ∼ N250(0, I)

– proposal distribution: y|x ∼ N250(0, 0.9
2 · I)
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Independent proposal MH (cont.)

• Another toy example

– target distribution: x ∼ N250(0, I)

– proposal distribution: y|x ∼ N250(0, 1.1
2 · I)
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• Experience:

– Except in low dimensional spaces: Convergence

of independent proposal MH is either very good

or very bad, usually very bad

– The tails of the proposal distribution must at

least be as heavy as the tails of the target dis-

tribution
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Random walk proposal MH

• Target density: π(x), x ∈ R
N

• Proposal density: Q(y|x) = q
(

y−x
σ

)

– typically: Gaussian proposal

– proposal mean is current state

– tuning parameter: σ

• Toy example

– target distribution: x ∼ N250(0, I)

– proposal distribution: y|x ∼ N250(x, σ2 · I)

– trace plot and acf of x1

σ = 0.05, acceptance rate = 0.69
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Random walk proposal MH (cont.)

σ = 0.01, acceptance rate = 0.94
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σ = 0.10, acceptance rate = 0.426
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σ = 0.20, acceptance rate = 0.11
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σ = 0.30, acceptance rate = 0.018
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Random walk MH (cont.)

• Result (Roberts et al., 1997):

– let

π(x) =
n∏

i=1

f(xi)

where f(·) fulfil some conditions

– use Gaussian random walk MH algorithm to

sample π(x)

– asymptotically, as n → ∞, the optimal tuning

parameter σ gives acceptance rate 0.234.

• Rule of thumb for random walk MH:

– tune σ to get acceptance rate 0.234

– between 0.15 and 0.5 is ok.
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Langevin proposals

• Intuition: Should more oftenly propose new val-

ues in high probability area

• Suboptimal to have x as proposal mean

• Proposal mean should be shifted in the gradient

direction

• Langevin proposal

Q(y|x) = N(x + h∇π(x), h2I)

• Can also be motivated from stochastic differential

equation theory when h → 0

• For us h should not be too small

• Again one can ask how to choose h, or what is the

optimal acceptance rate

• The answer is acceptance rate about 0.5
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Combination of strategies

• Target distribution: π(x)

• Two proposal distributions: Q1(y|x) and Q2(y|x)

• How to combine the proposal distributions?

– first alternative

Q(y|x) = pQ1(y|x) + (1 − p)Q2(y|x)

α(y|x) = min

{
1,

π(y)(pQ1(x|y) + (1 − p)Q2(x|y))

π(x)(pQ1(y|x) + (1 − p)Q2(y|x))

}

– second alternative (notation for discrete x)

P (y|x) = pP1(y|x) + (1 − p)P2(y|x)

where

Pi(y|x) =

{
Qi(y|x)αi(y|x) if y 6= x

1 −
∑

z 6=x Qi(z|x)αi(z|x) if y = x

αi(y|x) = min

{
1,

π(y)Qi(x|y)

π(x)Qi(y|x)

}

• first alternative give higher acceptance rate

• second alternative cost less per iteration

• is the second alternative correct?
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Proof of correctness

• The Q1(y|x) gives P1(y|x) for which

π(y) =
∑

x∈Ω

π(x)P1(y|x)

• The Q2(y|x) gives P2(y|x) for which

π(y) =
∑

x∈Ω

π(x)P2(y|x)

• For P (y|x) = pP1(y|x) + (1− p)P2(y|x), need to verify

π(y) =
∑

x∈Ω

π(x)P (y|x)

• Start with the sum on the right
∑

x∈Ω

π(x)P (y|x) =
∑

x∈Ω

π(x)(pP1(y|x) + (1 − p)P2(y|x))

= p
∑

x∈Ω

π(x)P1(y|x) + (1 − p)
∑

x∈Ω

π(x)P2(y|x)

= pπ(y) + (1 − p)π(y) = π(y)

• P (y|x) fulfils detailed balance if P1(y|x) and P2(y|x) do

π(x)P (y|x) = π(y)P (x|y)
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Combination of strategies - example

• Target distribution π(x), x = (x1, x2) ∈ R
2
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• Proposal distributions, p = 1/2

– Q1(y|x):

∗ propose y1 ∼ N(x1, σ2)

∗ keep y2 = x2 unchanged

– Q2(y|x):

∗ propose y2 ∼ N(x2, σ2)

∗ keep y1 = x1 unchanged

• Note: Q1(y|x) and Q2(y|x) don’t give irreducible

Markov chains separately, together they do.
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Combination of strategies - example

• Target distribution π(x), x = (x1, x2) ∈ R
2

−2 −1 0 1 2

−
2

−
1

0
1

2

• Proposal distributions, p = 1/2

– Q1(y|x):

∗ propose y1 ∼ N(x1, 0.32)

∗ keep y2 = x2 unchanged

– Q2(y|x):

∗ propose y2 ∼ N(x2, 0.32)

∗ keep y1 = x1 unchanged

• Note: Q1(y|x) and Q2(y|x) don’t give irreducible

Markov chains separately, together they do.
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Combination of strategies - Ising

• Probability distribution

π(x) = c · exp



−β

∑

i∼j

I(xi 6= xj)





• N proposal distributions, Qi(y|x) is

– propose yi = 1 − xi

– keep yk = xk, k 6= i unchanged

– thus

Qi(y|x) =

{
1 if yi = 1 − xi and yk = xk, k 6= i,

0 otherwise

αi(y|x) = min

{
1,

π(y)

π(x)

}

• In each iteration: draw i ∈ {1, . . . , n} at random

• Note:

– same algorithm as before

– don’t need to be any randomness in Qi(y|x)

• Can we “visit” the nodes sequentially in stead?
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Combination of strategies

• Target distribution: π(x)

• Two proposal distributions: Q1(y|x) and Q2(y|x)

• How to combine the proposal distributions?

– third alternative

P (y|x) =
∑

z∈Ω

P1(z|x)P2(y|z)

∗ update x1, update x2, update x1 and so on

• Is this third alternative correct?
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Proof of correctness

• The Q1(y|x) gives P1(y|x) for which

π(y) =
∑

x∈Ω

π(x)P1(y|x)

• The Q2(y|x) gives P2(y|x) for which

π(y) =
∑

x∈Ω

π(x)P2(y|x)

• For P (y|x) =
∑

z∈Ω P1(z|x)P2(y|z), need to verify

π(y) =
∑

x∈Ω

π(x)P (y|x)

• Start with the sum on the right

∑

x∈Ω

π(x)P (y|x) =
∑

x∈Ω

[
π(x)

∑

z∈Ω

P1(z|x)P2(y|z)

]

=
∑

z∈Ω

[
P2(y|z)

∑

x∈Ω

π(x)P1(z|x)

]

=
∑

z∈Ω

P2(y|z)π(z) = π(y)

• P (y|x) does not fulfil detailed balance even if P1(y|x)

and P2(y|x) do

18



Gibbs sampler

• Let x = (x1, . . . , xn)

• N proposal distributions, Qi(y|x) is

– propose yi ∼ π(yi|x1, . . . , xi−1, xi+1, . . . , xn)

– keep yk = xk, k 6= i unchanged

• Notation: x−i = (x1, . . . , xi−1, xi+1, . . . , xn)

• Acceptance probability

αi(y|x) = min

{
1,

π(y)Qi(x|y)

π(x)Qi(y|x)

}
= min

{
1,

π(y)π(xi|y−i)

π(x)π(yi|x−i)

}

= min



1,

π(y) π(xi,y−i)

π(y−i)

π(x) π(yi,x−i)

π(x−i)



 = min

{
1,

π(y) π(xi, y−i)

π(x) π(yi, x−i)

}

= min

{
1,

π(y)π(xi, x−i)

π(x)π(yi, y−i)

}
= 1

• Thus: always accept
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Gibbs for Ising

• Ising probability distribution

π(x) = c · exp

{
−β

∑

k∼l

I(xk 6= xl)

}

• Full conditional distribution

π(xi|x−i) =
π(xi, x−i)

π(x−i)
∝ π(xi, x−i) = π(x)

= exp

{
−β

∑

k∼l

I(xk 6= xl)

}

∝ exp

{
−β

∑

k∼i

I(xk 6= xi)

}

Thus

π(xi|x−i) = c exp

{
−β

∑

k∼i

I(xk 6= xi)

}

where

c =




1∑

xi=0

exp

{
−β

∑

k∼i

I(xk 6= xi)

}

−1

• Should we here prefer Gibbs, or always propose

to change the value of xi?
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Ising: Gibbs or propose to change?

• Probability for a changed value:

– Gibbs

π(1 − xi|x−1) =
e−β

∑
k∼i I(xk 6=1−xi)

e−β
∑

k∼i I(xk 6=xi) + e−β
∑

k∼i I(xk 6=1−xi)

=
e−β·(# equal)

e−β·(# unequal) + e−β·(# equal)

=
e−β·(# equal − # unequal)

1 + e−β·(# equal − # unequal)

– always propose to change

α(y|x) = min
{

1, e−β
∑

j∼i[I(xj 6=1−xi)−I(xj 6=xi)]
}

= min
{

1, e−β·(# equal − # unequal)
}

• See that

π(1 − xi|x−i) < α(y|x)

• Better always to propose a change
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Gibbs for a bivariate normal

• Toy example, you should never use MCMC here!

• Target distribution

π(x) =
1

2π

1√
|Σ|

exp

{
−

1

2
xTΣ−1x

}
, x ∈ R

2, Σ =

[
1 0.7

0.7 1

]
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1

2

• Full conditional distributions

– x1|x2 ∼ N(0.7x2, 0.51)

– x2|x1 ∼ N(0.7x1, 0.51)

• Note:

– Gibbs contains no tuning parameter

– in Gibbs we must be able to find (and sample

from) the full conditionals

– in Gibbs: waist of time to update the same

coordinate two times in a row
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Gibbs for a bivariate normal

• Toy example, you should never use MCMC here!

• Target distribution

π(x) =
1

2π

1√
|Σ|

exp

{
−

1

2
xTΣ−1x

}
, x ∈ R

2, Σ =

[
1 0.7

0.7 1

]
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−
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• Full conditional distributions

– x1|x2 ∼ N(0.7x2, 0.51)

– x2|x1 ∼ N(0.7x1, 0.51)

• Note:

– Gibbs contains no tuning parameter

– in Gibbs we must be able to find (and sample

from) the full conditionals

– waist of time to update the same coordinate

two times in a row

23



Plan

• The Markov chain Monte Carlo (MCMC) idea

• Some Markov chain theory

• Implementation of the MCMC idea

– Metropolis–Hastings algorithm

• MCMC strategies

– independent proposals

– random walk proposals

– combination of strategies

– Gibbs sampler

• Convergence diagnostics

– trace plots

– autocorrelation functions

– one chain or many chains?

• Typical MCMC problems — and some remedies

– high correlation between variables

– multimodality

– different scales
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Convergence diagnostics

• When has the Markov chain converged?

• Several theoretical results exist: for a given ε > 0

||π(·) −Pn(·)|| ≤ ε for all n ≥ M(ε)

where (ε) can be computed.

– bounds too weak to be of any practical value

• Standard start to evaluate convergence:

– look at trace plots

∗ Ising example:

# 1’s # 0-1 neighbours

0 10000 20000 30000 40000 50000

0
1
0
0
0
0

3
0
0
0
0

0 10000 20000 30000 40000 50000

0
1
0
0
0
0

3
0
0
0
0

• Result:

Pn(·) →d π(·)

m∫
f(·)dPn →

∫
f(·)dπ for all

bounded real-valued (µ-measurable) functions f(·)
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One chain or many chains?

• With fixed cpu-time available, should we

– use all time in one long Markov chain run, or

– run several shorter Markov chain runs?

• One long Markov chain run

0 10000 20000 30000 40000 50000
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0
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4

– only one burn-in period to discard

– more likely that you really have converged

• Several shorter Markov chain runs
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– easier to evaluate the convergence

– easier to estimate estimation variance

∗ the chains are independent
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Convergence diagnostics

• many more formal convergence diagnostics exists

– some based on a single Markov chain run

– some based on several Markov chain runs

• To see when a chain has convergence, we need to

simulate much longer than to convergence

• If some properties of the target distribution is

known: use it to check convergence!

• All convergence diagnostics can (and do) fail

– we can construct situations where it fails
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Compare algorithms

• Assume: have two (or more) Markov chains with

limiting distribution π(x)

• Which one should we prefer?

• Estimate and compare autocorrelation functions

– ignore burn-in periods!

– assume stationary time series

– must again consider scalar functions f(x)

– random walk proposal example, choice of tun-

ing parameter

σ = 0.05, acceptance rate = 0.69
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σ = 0.20, acceptance rate = 0.11
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σ = 0.30, acceptance rate = 0.018
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Variance estimation in MCMC

• Standard Monte Carlo gives independent samples

x1, . . . , xn ∼ π(x) and independent

– unbiased estimator for µf =
∫

f(x)π(x)dx

µ̂f =
1

n

n∑

i=1

f(xi)

– variance estimation is easy

Var[µ̂f ] =
1

n2

n∑

i=1

Var[f(xi)] =
Var[f(x)]

n

V̂ar[f(x)] =
1

n − 1

n∑

i=1

(f(xi) − µ̂f)
2

• MCMC gives dependent samples

x1, . . . , xn ∼ π(x) and dependent

– unbiased estimator for µf

µ̂f =
1

n

n∑

i=1

f(xi)

– variance estimation is not so easy

Var[µ̂f ] =
1

n2




n∑

i=1

Var[f(xi)] +
n∑

i=1

∑

j 6=i

Cov[f(xi), f(xj)]
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Variance estimation in MCMC (cont.)

• Recall

µ̂f =
1

n

n∑

i=1

f(xi)

Var[µ̂f ] =
1

n2




n∑

i=1

Var[f(xi)] +
n∑

i=1

∑

j 6=i

Cov[f(xi), f(xj)]




=
Var[f(x)]

n

[
1 + 2

∞∑

h=1

ρ(h)

]

– note: negative correlations are good!

• Two approaches

– estimate the correlation structure
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∗ needs to “cut” the sum somewhere

∗ different strategies exist

– do several independent runs

∗ or divide a long run into (almost) indepen-

dent batches
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Variance estimation in MCMC (cont.)

• Do K independent MCMC runs

µ̂
(k)
f =

1

n

n∑

i=1

f(x
(k)
i )

µ̂f =
1

K

K∑

k=1

µ̂
(k)
f

– then µ̂
(1)
f , . . . , µ̂

(K)
f are independent

Var[µ̂f ] =
Var[µ̂

(·)
f ]

K

V̂ar[µ̂
(·)
f ] =

1

K − 1

K∑

k=1

(
µ̂

(k)
f − µ̂f

)2

• Alternatively divide one long run into K batches

and treat the batches as independent

– batch lengths must be long compared to cor-

relation length
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Plan

• The Markov chain Monte Carlo (MCMC) idea

• Some Markov chain theory

• Implementation of the MCMC idea

– Metropolis–Hastings algorithm

• MCMC strategies

– independent proposals

– random walk proposals

– combination of strategies

– Gibbs sampler

• Convergence diagnostics

– trace plots

– autocorrelation functions

– one chain or many chains?

• Typical MCMC problems — and some remedies

– high correlation between variables

– multimodality

– different scales
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Typical MCMC problems

• Note: If you knows the solution, it is easy to solve

a problem!

• Properties of π(x) that may make MCMC difficult

– strong dependency between variables

– several modes

– different scales on different variables
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• In toy examples: this is not a problem

– we know how π(x) looks like

• In real problems: this may be difficult

– we have a formula for π(x)

– we don’t know how π(x) looks like

• Need to iterate
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Strong dependencies

• Gibbs sampling doesn’t work
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• Changing one variable at a time doesn’t work
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Strong dependencies

• Blocking may solve the problem

– x = (x1, x2, . . . , xN)

– x1 and x2 are highly correlated

– propose joint updates for x1 and x2

∗ block Gibbs: (y1, y2)|x ∼ π(y1, y2|x−{1,2})

∗ random walk Metropolis–Hastings:

(y1, y2)|x ∼ N2

([
x1

x2

]
, R

)

−2 −1 0 1 2

−
2

−
1

0
1

2

∗ in toy example:

· target: correlation 0.999

· in proposal: correlation 0.90
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Strong dependencies

• Reparameterisation may solve the problem

– x = (x1, x2, . . . , xN)

– x1 and x2 are highly correlated

– define [
x̃1

x̃2

]
= A

[
x1

x2

]

and

x̃i = xi for i = 3, . . . , N

– with suitable choice of matrix A, the correla-

tion between x̃1 and x̃2 in π(x̃) will be much

lower
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Multimodal target distribution

• Random walk proposals doesn’t work
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2

• To come from one mode to another: needs to visit

low probability area — happens very seldomly
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Multimodal target distributions

• If you know (approximately) the modes

– can combine

∗ independent proposals

y|x ∼
1

2
g1(y) +

1

2
g2(y)

∗ random walk proposals

y|x ∼ N(x, R)

– randomly or systematically
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Multimodal target distributions
• Simulated tempering

– let

π(x) = c exp {−U(x)}

– introduce an extra variable, k ∈ {0, 1, 2, . . . , K}

– define K temperatures: 1 = T0 < T1 < T2 < . . . <

TK

– define K distributions and constants c0, c1, . . . , cK

πk(x) = ck exp

{
−

1

Tk
U(x)

}

∗ note: π0(x) = π(x)

T = 1 T = 5 T = 10
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– define joint distribution for x and k

π(x, k) ∝ πk(x)

– simulate from π(x, k) with Metropolis–Hastings

– keep simulated x’s that corresponds to k = 0

• Note: the Tk’s and ck’s must be chosen carefully
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Multimodal target distributions

• Other solutions has been proposed

– MCMCMC: Metropolis coupled MCMC

∗ simulate one xk for each temperate Tk

∗ simulate each xk by standard Metropolis-

Hastings

∗ occasionally propose to swap two “neigh-

bour” states xk and xk+1

∗ accept/reject according to MH acceptance

probability

– mode-jumping

∗ in a Metropolis–Hastings algorithm: use lo-

cal optimisation to locate a local maximum,

then propose a new value from that mode

∗ more on this in an example later (?)
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Different scales

• With Gibbs: different scales are not a problem

– Gibbs finds the appropriate scale

• If Gibbs not possible: have to tune to find appro-

priate scales

equal scale tuned scales

in proposals in proposals
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• Tempting to tune the proposal scales automati-

cally based on the history of the Markov chain

– careful!! it is no longer Markov

– more difficult to get the required limiting dis-

tribution

– some adaptive MCMC algorithms exist — more

later (?)
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