More on Markov chain Monte Carlo

First winter school in eScience Geilo, Thursday February 1st 2007

Pdf file available from http://www.math.ntnu.no/~haakont/vinterskole/

Håkon Tjelmeland Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim, Norway

Some repetition

- \bullet Given target distribution: $\pi(x), x \in \mathbb{R}^N$
- Want to understand the properties of $\pi(x)$

$$\mu_f = \mathbf{E}[f(x)] = \int f(x)\pi(x)\mathbf{d}x$$

- or what is the probability distribution of f(x)?

• Generate realisations x_1, \ldots, x_n from $\pi(x)$

$$\widehat{\mu}_f = \frac{1}{N} \sum_{i=1}^N f(x_i)$$

- or make a histogram of $f(x_1), \ldots, f(x_n)$

• Example: Ising model, $x = (x^1, ..., x^N), x^i \in \{0, 1\}$

$$\pi(x) = c \exp\left\{-\beta \sum_{i \sim j} I(x^i \neq x^j)\right\}$$

- let

$$f_1(x) = \frac{1}{N} \sum_{i=1}^N I(x^i = 1)$$
 and $f_2(x) = \frac{1}{N} \sum_{i \sim j} I(x^i = x^j)$

- Note: because of symmetry $\mathbf{E}[f_1(x)] = 1/2$

Some repetition (cont.)

• Note: In principle we can compute

$$\mathbf{E}[f_2(x)] = \sum_x f_2(x)\pi(x)$$

- but the sum has $2^{200\cdot 200} \approx 10^{12041}$ terms

- and to find the normalising constant of $\pi(x)$ we need to compute a sum with the same number of terms
- So in practice it is not possible (in my lifetime)

Some repetition (cont.)

• Realisations from $\pi(x)$ with $\beta = 0.87$

• Emperical mean values

$$\hat{\mu}_{f_1} = 0.5034$$
 and $\hat{\mu}_{f_2} = 0.665$

• Histograms

Some repetition (cont.)

• Metropolis–Hastings transition kernel

$$\mathbf{P}(y|x) = \mathbf{Q}(y|x)\alpha(y|x) , y \neq x$$
$$\alpha(y|x) = \min\left\{1, \frac{\pi(x)\mathbf{Q}(x|y)}{\pi(y)\mathbf{Q}(y|x)}\right\}$$

- Metropolis–Hastings algorithm
 - -generate initial state $x_0 \sim f(x_0)$
 - **for** i = 1, 2, ...
 - * propose potential new state $y_i \sim \mathbf{Q}(y_i|x_{i-1})$
 - * compute acceptance probability $\alpha(y_i|x_{i-1})$
 - * generate $u_i \sim \text{Uniform}(0, 1)$
 - * if $u_i \leq \alpha(y_i|x_{i-1})$ accept y_i , i.e. set $x_i = y_i$, otherwise reject y_i and set $x_i = x_{i-1}$
- Next question: What $\mathbf{Q}(y|x)$ to use?

– simple choices is often ok — but not always

Independent proposal MH

- Target density: $\pi(x), x \in \mathbb{R}^N$
- Proposal density: Q(y|x) = q(y)
 - does not depend on current state x
 - -q(y) is an approximation to $\pi(x)$
- Toy example
 - target distribution: $x \sim \mathbf{N}_{250}(0, I)$
 - proposal distribution: $y|x \sim \mathbf{N}_{250}(0, 0.9^2 \cdot I)$

- trace plot of x^1

Independent proposal MH (cont.)

• Another toy example

- target distribution: $x \sim \mathbf{N}_{250}(0, I)$
- proposal distribution: $y|x \sim \mathbf{N}_{250}(0, 1.1^2 \cdot I)$

- trace plot of x^1

• Experience:

- Except in low dimensional spaces: Convergence of independent proposal MH is either very good or very bad, usually very bad
- The tails of the proposal distribution must at least be as heavy as the tails of the target distribution

Random walk proposal MH

- Target density: $\pi(x), x \in \mathbb{R}^N$
- Proposal density: $Q(y|x) = q\left(\frac{y-x}{\sigma}\right)$
 - typically: Gaussian proposal
 - proposal mean is current state
 - tuning parameter: σ
- Toy example
 - target distribution: $x \sim \mathbf{N}_{250}(0, I)$
 - proposal distribution: $y|x \sim \mathbf{N}_{250}(x, \sigma^2 \cdot I)$
 - trace plot and acf of x^1

 $\sigma = 0.05$, acceptance rate = 0.69

Random walk proposal MH (cont.)

Random walk MH (cont.)

• Result (Roberts et al., 1997):

- let

$$\pi(x) = \prod_{i=1}^n f(x^i)$$

where $f(\cdot)$ fulfil some conditions

- use Gaussian random walk MH algorithm to sample $\pi(x)$
- asymptotically, as $n \to \infty$, the optimal tuning parameter σ gives acceptance rate 0.234.
- Rule of thumb for random walk MH:
 - tune σ to get acceptance rate 0.234
 - between 0.15 and 0.5 is ok.

Langevin proposals

- Intuition: Should more oftenly propose new values in high probability area
- Suboptimal to have x as proposal mean
- Proposal mean should be shifted in the gradient direction
- Langevin proposal

$$Q(y|x) = \mathbf{N}(x + h\nabla\pi(x), h^2 I)$$

- Can also be motivated from stochastic differential equation theory when $h \rightarrow 0$
- \bullet For us h should not be too small
- Again one can ask how to choose *h*, or what is the optimal acceptance rate
- The answer is acceptance rate about 0.5

Combination of strategies

- Target distribution: $\pi(x)$
- Two proposal distributions: $Q_1(y|x)$ and $Q_2(y|x)$
- How to combine the proposal distributions?
 - first alternative

$$\begin{aligned} Q(y|x) &= pQ_1(y|x) + (1-p)Q_2(y|x) \\ \alpha(y|x) &= \min\left\{1, \frac{\pi(y)(pQ_1(x|y) + (1-p)Q_2(x|y))}{\pi(x)(pQ_1(y|x) + (1-p)Q_2(y|x))}\right\}\end{aligned}$$

- second alternative (notation for discrete x)

$$P(y|x) = pP_1(y|x) + (1-p)P_2(y|x)$$

where

$$P_{i}(y|x) = \begin{cases} Q_{i}(y|x)\alpha_{i}(y|x) & \text{if } y \neq x\\ 1 - \sum_{z \neq x} Q_{i}(z|x)\alpha_{i}(z|x) & \text{if } y = x \end{cases}$$
$$\alpha_{i}(y|x) = \min\left\{1, \frac{\pi(y)Q_{i}(x|y)}{\pi(x)Q_{i}(y|x)}\right\}$$

- first alternative give higher acceptance rate
- second alternative cost less per iteration
- is the second alternative correct?

Proof of correctness

• The $Q_1(y|x)$ gives $P_1(y|x)$ for which

$$\pi(y) = \sum_{x \in \Omega} \pi(x) P_1(y|x)$$

• The $Q_2(y|x)$ gives $P_2(y|x)$ for which

$$\pi(y) = \sum_{x \in \Omega} \pi(x) P_2(y|x)$$

• For
$$P(y|x) = pP_1(y|x) + (1-p)P_2(y|x)$$
, need to verify
$$\pi(y) = \sum_{x \in \Omega} \pi(x)P(y|x)$$

• Start with the sum on the right

$$\begin{split} \sum_{x \in \Omega} \pi(x) P(y|x) &= \sum_{x \in \Omega} \pi(x) (p P_1(y|x) + (1-p) P_2(y|x)) \\ &= p \sum_{x \in \Omega} \pi(x) P_1(y|x) + (1-p) \sum_{x \in \Omega} \pi(x) P_2(y|x) \\ &= p \pi(y) + (1-p) \pi(y) = \pi(y) \end{split}$$

• P(y|x) fulfils detailed balance if $P_1(y|x)$ and $P_2(y|x)$ do $\pi(x)P(y|x) = \pi(y)P(x|y)$

Combination of strategies - example

• Target distribution $\pi(x), x = (x^1, x^2) \in \mathbb{R}^2$

- Proposal distributions, p = 1/2
 - $\begin{array}{l} \ Q_1(y|x) \texttt{:} \\ * \ \mathbf{propose} \ y^1 \sim N(x^1, \sigma^2) \\ * \ \mathbf{keep} \ y^2 = x^2 \ \mathbf{unchanged} \\ \ Q_2(y|x) \texttt{:} \\ * \ \mathbf{propose} \ y^2 \sim N(x^2, \sigma^2) \\ * \ \mathbf{keep} \ y^1 = x^1 \ \mathbf{unchanged} \end{array}$
- Note: $Q_1(y|x)$ and $Q_2(y|x)$ don't give irreducible Markov chains separately, together they do.

Combination of strategies - example

• Target distribution $\pi(x), x = (x^1, x^2) \in \mathbb{R}^2$

- Proposal distributions, p = 1/2
 - $\begin{array}{l} \ Q_1(y|x) \texttt{:} \\ * \ \mathbf{propose} \ y^1 \sim N(x^1, 0.3^2) \\ * \ \mathbf{keep} \ y^2 = x^2 \ \mathbf{unchanged} \\ \ Q_2(y|x) \texttt{:} \\ * \ \mathbf{propose} \ y^2 \sim N(x^2, 0.3^2) \\ * \ \mathbf{keep} \ y^1 = x^1 \ \mathbf{unchanged} \end{array}$
- Note: $Q_1(y|x)$ and $Q_2(y|x)$ don't give irreducible Markov chains separately, together they do.

Combination of strategies - Ising

• Probability distribution

$$\pi(x) = c \cdot \exp\left\{-\beta \sum_{i \sim j} I(x^i \neq x^j)\right\}$$

• N proposal distributions, $Q_i(y|x)$ is

$$-$$
 propose $y^i = 1 - x^i$

- keep $y^k = x^k, k \neq i$ unchanged
- thus

$$Q_i(y|x) = \begin{cases} 1 & \text{if } y^i = 1 - x^i \text{ and } y^k = x^k, k \neq i, \\ 0 & \text{otherwise} \end{cases}$$
$$\alpha_i(y|x) = \min\left\{1, \frac{\pi(y)}{\pi(x)}\right\}$$

- \bullet In each iteration: draw $i \in \{1, \dots, n\}$ at random
- Note:
 - same algorithm as before
 - don't need to be any randomness in $Q_i(y|x)$
- Can we "visit" the nodes sequentially in stead?

Combination of strategies

- Target distribution: $\pi(x)$
- Two proposal distributions: $Q_1(y|x)$ and $Q_2(y|x)$
- How to combine the proposal distributions?

- third alternative

$$P(y|x) = \sum_{z \in \Omega} P_1(z|x) P_2(y|z)$$

* update x^1 , update x^2 , update x^1 and so on

• Is this third alternative correct?

Proof of correctness

• The $Q_1(y|x)$ gives $P_1(y|x)$ for which

$$\pi(y) = \sum_{x \in \Omega} \pi(x) P_1(y|x)$$

• The $Q_2(y|x)$ gives $P_2(y|x)$ for which

$$\pi(y) = \sum_{x \in \Omega} \pi(x) P_2(y|x)$$

• For
$$P(y|x) = \sum_{z \in \Omega} P_1(z|x)P_2(y|z)$$
, need to verify
$$\pi(y) = \sum_{x \in \Omega} \pi(x)P(y|x)$$

• Start with the sum on the right

$$\sum_{x \in \Omega} \pi(x) P(y|x) = \sum_{x \in \Omega} \left[\pi(x) \sum_{z \in \Omega} P_1(z|x) P_2(y|z) \right]$$
$$= \sum_{z \in \Omega} \left[P_2(y|z) \sum_{x \in \Omega} \pi(x) P_1(z|x) \right]$$
$$= \sum_{z \in \Omega} P_2(y|z) \pi(z) = \pi(y)$$

• P(y|x) does not fulfil detailed balance even if $P_1(y|x)$ and $P_2(y|x)$ do

Gibbs sampler

- Let $x = (x^1, ..., x^n)$
- N proposal distributions, $Q_i(y|x)$ is
 - propose $y^i \sim \pi(y^i | x^1, \dots, x^{i-1}, x^{i+1}, \dots, x^n)$ - keep $y^k = x^k, k \neq i$ unchanged
- Notation: $x^{-i} = (x^1, ..., x^{i-1}, x^{i+1}, ..., x^n)$
- Acceptance probability

$$\alpha_{i}(y|x) = \min\left\{1, \frac{\pi(y)Q_{i}(x|y)}{\pi(x)Q_{i}(y|x)}\right\} = \min\left\{1, \frac{\pi(y)\pi(x^{i}|y^{-i})}{\pi(x)\pi(y^{i}|x^{-i})}\right\}$$
$$= \min\left\{1, \frac{\pi(y)\frac{\pi(x^{i},y^{-i})}{\pi(x)\frac{\pi(y^{i},x^{-i})}{\pi(x^{-i})}}\right\} = \min\left\{1, \frac{\pi(y)\pi(x^{i},y^{-i})}{\pi(x)\pi(y^{i},x^{-i})}\right\}$$
$$= \min\left\{1, \frac{\pi(y)\pi(x^{i},x^{-i})}{\pi(x)\pi(y^{i},y^{-i})}\right\} = 1$$

• Thus: always accept

Gibbs for Ising

• Ising probability distribution

$$\pi(x) = c \cdot \exp\left\{-\beta \sum_{k \sim l} I(x^k \neq x^l)\right\}$$

• Full conditional distribution

$$\pi(x^{i}|x^{-i}) = \frac{\pi(x^{i}, x^{-i})}{\pi(x^{-i})} \propto \pi(x^{i}, x^{-i}) = \pi(x)$$
$$= \exp\left\{-\beta \sum_{k \sim l} I(x^{k} \neq x^{l})\right\}$$
$$\propto \exp\left\{-\beta \sum_{k \sim i} I(x^{k} \neq x^{i})\right\}$$

Thus

$$\pi(x^i|x^{-i}) = c \exp\left\{-\beta \sum_{k \sim i} I(x^k \neq x^i)\right\}$$

where

$$c = \left[\sum_{x^i=0}^1 \exp\left\{-\beta \sum_{k\sim i} I(x^k \neq x^i)\right\}\right]^{-1}$$

• Should we here prefer Gibbs, or always propose to change the value of x_i ?

Ising: Gibbs or propose to change?

- Probability for a changed value:
 - $-\operatorname{Gibbs}$

$$\pi(1 - x^{i}|x^{-1}) = \frac{e^{-\beta \sum_{k \sim i} I(x^{k} \neq 1 - x^{i})}}{e^{-\beta \sum_{k \sim i} I(x^{k} \neq x^{i})} + e^{-\beta \sum_{k \sim i} I(x^{k} \neq 1 - x^{i})}}$$
$$= \frac{e^{-\beta \cdot (\# \text{ equal})}}{e^{-\beta \cdot (\# \text{ equal})} + e^{-\beta \cdot (\# \text{ equal})}}$$
$$= \frac{e^{-\beta \cdot (\# \text{ equal} - \# \text{ unequal})}}{1 + e^{-\beta \cdot (\# \text{ equal} - \# \text{ unequal})}}$$

– always propose to change

$$\begin{aligned} \alpha(y|x) &= \min\left\{1, e^{-\beta \sum_{j \sim i} \left[I(x^{j} \neq 1 - x^{i}) - I(x^{j} \neq x^{i})\right]}\right\} \\ &= \min\left\{1, e^{-\beta \cdot (\# \text{ equal } - \# \text{ unequal})}\right\} \end{aligned}$$

• See that

$$\pi(1-x^i|x^{-i}) < \alpha(y|x)$$

• Better always to propose a change

Gibbs for a bivariate normal

- Toy example, you should never use MCMC here!
- Target distribution

- Full conditional distributions
 - $-x^{1}|x^{2} \sim \mathbf{N}(0.7x^{2}, 0.51)$ $-x^{2}|x^{1} \sim \mathbf{N}(0.7x^{1}, 0.51)$
- Note:
 - Gibbs contains no tuning parameter
 - in Gibbs we must be able to find (and sample from) the full conditionals
 - in Gibbs: waist of time to update the same coordinate two times in a row

Gibbs for a bivariate normal

- Toy example, you should never use MCMC here!
- Target distribution

$$\pi(x) = \frac{1}{2\pi} \frac{1}{\sqrt{|\Sigma|}} \exp\left\{-\frac{1}{2}x^T \Sigma^{-1} x\right\} , x \in \mathbb{R}^2, \Sigma = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}$$

- Full conditional distributions
 - $-x^{1}|x^{2} \sim \mathbf{N}(0.7x^{2}, 0.51)$ $-x^{2}|x^{1} \sim \mathbf{N}(0.7x^{1}, 0.51)$
- Note:
 - Gibbs contains no tuning parameter
 - in Gibbs we must be able to find (and sample from) the full conditionals
 - waist of time to update the same coordinate two times in a row

Plan

- The Markov chain Monte Carlo (MCMC) idea
- Some Markov chain theory
- Implementation of the MCMC idea
 - Metropolis–Hastings algorithm
- MCMC strategies
 - independent proposals
 - random walk proposals
 - combination of strategies
 - Gibbs sampler
- Convergence diagnostics
 - trace plots
 - autocorrelation functions
 - one chain or many chains?
- Typical MCMC problems and some remedies
 - high correlation between variables
 - multimodality
 - different scales

Convergence diagnostics

- When has the Markov chain converged?
- Several theoretical results exist: for a given $\epsilon > 0$

$$||\pi(\cdot) - \mathbf{P}^n(\cdot)|| \le \epsilon \text{ for all } n \ge M(\epsilon)$$

where (ϵ) can be computed.

- bounds too weak to be of any practical value
- Standard start to evaluate convergence:
 - look at trace plots
 - * Ising example:

• Result:

$$\begin{array}{rcl} \mathbf{P}^{n}(\cdot) & \rightarrow^{d} & \pi(\cdot) \\ & & & \\ & & & \\ & \int f(\cdot) \mathbf{d} \mathbf{P}_{n} & \rightarrow & \int f(\cdot) \mathbf{d} \pi \text{ for all} \\ \end{array}$$
bounded real-valued (µ-measurable) functions $f(\cdot)$

_1

One chain or many chains?

- With fixed cpu-time available, should we
 - use all time in one long Markov chain run, or
 - run several shorter Markov chain runs?
- One long Markov chain run

- only one burn-in period to discard
- more likely that you really have converged
- Several shorter Markov chain runs

- easier to evaluate the convergence
- easier to estimate estimation variance
 - * the chains are independent

Convergence diagnostics

- many more formal convergence diagnostics exists
 - some based on a single Markov chain run
 - some based on several Markov chain runs
- To see when a chain has convergence, we need to simulate much longer than to convergence
- If some properties of the target distribution is known: use it to check convergence!
- All convergence diagnostics can (and do) fail

- we can construct situations where it fails

Compare algorithms

- Assume: have two (or more) Markov chains with limiting distribution $\pi(x)$
- Which one should we prefer?
- Estimate and compare autocorrelation functions
 - ignore burn-in periods!
 - assume stationary time series
 - must again consider scalar functions f(x)
 - random walk proposal example, choice of tuning parameter

Variance estimation in MCMC

• Standard Monte Carlo gives independent samples

 $x_1, \ldots, x_n \sim \pi(x)$ and independent

– unbiased estimator for $\mu_f = \int f(x) \pi(x) dx$

$$\widehat{\mu}_f = \frac{1}{n} \sum_{i=1}^n f(x_i)$$

– variance estimation is easy

$$\mathbf{Var}[\widehat{\mu}_f] = \frac{1}{n^2} \sum_{i=1}^n \mathbf{Var}[f(x_i)] = \frac{\mathbf{Var}[f(x)]}{n}$$
$$\widehat{\mathbf{Var}}[f(x)] = \frac{1}{n-1} \sum_{i=1}^n (f(x_i) - \widehat{\mu}_f)^2$$

• MCMC gives dependent samples

 $x_1, \ldots, x_n \sim \pi(x)$ and dependent

– unbiased estimator for μ_f

$$\widehat{\mu}_f = \frac{1}{n} \sum_{i=1}^n f(x_i)$$

- variance estimation is not so easy

$$\mathbf{Var}[\widehat{\mu}_f] = \frac{1}{n^2} \left[\sum_{i=1}^n \mathbf{Var}[f(x_i)] + \sum_{i=1}^n \sum_{j \neq i} \mathbf{Cov}[f(x_i), f(x_j)] \right]$$

Variance estimation in MCMC (cont.)

• Recall

$$\widehat{\mu}_f = \frac{1}{n} \sum_{i=1}^n f(x_i)$$

$$\mathbf{Var}[\widehat{\mu}_{f}] = \frac{1}{n^{2}} \left[\sum_{i=1}^{n} \mathbf{Var}[f(x_{i})] + \sum_{i=1}^{n} \sum_{j \neq i} \mathbf{Cov}[f(x_{i}), f(x_{j})] \right]$$
$$= \frac{\mathbf{Var}[f(x)]}{n} \left[1 + 2\sum_{h=1}^{\infty} \rho(h) \right]$$

- note: negative correlations are good!
- Two approaches
 - estimate the correlation structure

- * needs to "cut" the sum somewhere
- * different strategies exist
- do several independent runs
 - * or divide a long run into (almost) independent batches

Variance estimation in MCMC (cont.)

• Do K independent MCMC runs

$$\widehat{\mu}_f^{(k)} = \frac{1}{n} \sum_{i=1}^n f(x_i^{(k)})$$
$$\widehat{\mu}_f = \frac{1}{K} \sum_{k=1}^K \widehat{\mu}_f^{(k)}$$

– then $\widehat{\mu}_{f}^{(1)},\ldots,\widehat{\mu}_{f}^{(K)}$ are independent

$$\mathbf{Var}[\widehat{\mu}_{f}] = \frac{\mathbf{Var}[\widehat{\mu}_{f}^{(\cdot)}]}{K}$$
$$\widehat{\mathbf{Var}}[\widehat{\mu}_{f}^{(\cdot)}] = \frac{1}{K-1} \sum_{k=1}^{K} \left(\widehat{\mu}_{f}^{(k)} - \widehat{\mu}_{f}\right)^{2}$$

- Alternatively divide one long run into K batches and treat the batches as independent
 - batch lengths must be long compared to correlation length

Plan

- The Markov chain Monte Carlo (MCMC) idea
- Some Markov chain theory
- Implementation of the MCMC idea
 - Metropolis–Hastings algorithm
- MCMC strategies
 - independent proposals
 - random walk proposals
 - combination of strategies
 - Gibbs sampler
- Convergence diagnostics
 - trace plots
 - autocorrelation functions
 - one chain or many chains?
- Typical MCMC problems and some remedies
 - high correlation between variables
 - multimodality
 - different scales

Typical MCMC problems

- Note: If you knows the solution, it is easy to solve a problem!
- Properties of $\pi(x)$ that may make MCMC difficult
 - strong dependency between variables
 - several modes
 - different scales on different variables

- In toy examples: this is not a problem
 - we know how $\pi(x)$ looks like
- In real problems: this may be difficult
 - we have a formula for $\pi(x)$
 - we don't know how $\pi(x)$ looks like
- Need to iterate

Strong dependencies

• Gibbs sampling doesn't work

• Changing one variable at a time doesn't work

Strong dependencies

• Blocking may solve the problem

$$-x = (x^1, x^2, \dots, x^N)$$

- $-x^1$ and x^2 are highly correlated
- propose joint updates for x^1 and x^2 * block Gibbs: $(y^1, y^2)|x \sim \pi(y^1, y^2|x^{-\{1,2\}})$ * random walk Metropolis-Hastings:

$$(y^1, y^2)|x \sim \mathbf{N}_2\left(\left[\begin{array}{c}x^1\\x^2\end{array}\right], R\right)$$

* in toy example:

- target: correlation 0.999
- in proposal: correlation 0.90

Strong dependencies

• Reparameterisation may solve the problem

$$-x = (x^1, x^2, \dots, x^N)$$

- $-x^1$ and x^2 are highly correlated
- define

$$\left[\begin{array}{c} \tilde{x}^1\\ \tilde{x}^2 \end{array}\right] = A \left[\begin{array}{c} x^1\\ x^2 \end{array}\right]$$

and

$$\tilde{x}^i = x^i$$
 for $i = 3, \dots, N$

– with suitable choice of matrix A, the correlation between \tilde{x}^1 and \tilde{x}^2 in $\pi(\tilde{x})$ will be much lower

Multimodal target distribution

• Random walk proposals doesn't work

• To come from one mode to another: needs to visit low probability area — happens very seldomly

Multimodal target distributions

- If you know (approximately) the modes
 - can combine
 - * independent proposals

$$y|x \sim \frac{1}{2}g_1(y) + \frac{1}{2}g_2(y)$$

* random walk proposals

 $y|x \sim \mathbf{N}(x, R)$

- randomly or systematically

Multimodal target distributions

• Simulated tempering

- let

$$\pi(x) = c \exp\left\{-U(x)\right\}$$

- introduce an extra variable, $k \in \{0, 1, 2, \dots, K\}$
- define K temperatures: $1 = T_0 < T_1 < T_2 < \ldots < T_K$
- define K distributions and constants c_0, c_1, \ldots, c_K

$$\pi_k(x) = c_k \exp\left\{-\frac{1}{T_k}U(x)\right\}$$

* note: $\pi_0(x) = \pi(x)$

– define joint distribution for x and k $\pi(x,k)\propto\pi_k(x)$

- simulate from $\pi(x, k)$ with Metropolis-Hastings

- keep simulated x's that corresponds to k = 0
- Note: the T_k 's and c_k 's must be chosen carefully

Multimodal target distributions

- Other solutions has been proposed
 - MCMCMC: Metropolis coupled MCMC
 - * simulate one x_k for each temperate T_k
 - * simulate each x_k by standard Metropolis-Hastings
 - * occasionally propose to swap two "neighbour" states x_k and x_{k+1}
 - * accept/reject according to MH acceptance probability
 - mode-jumping
 - * in a Metropolis–Hastings algorithm: use local optimisation to locate a local maximum, then propose a new value from that mode
 - * more on this in an example later (?)

Different scales

- With Gibbs: different scales are not a problem
 - Gibbs finds the appropriate scale
- If Gibbs not possible: have to tune to find appropriate scales

- Tempting to tune the proposal scales automatically based on the history of the Markov chain
 - careful!! it is no longer Markov
 - more difficult to get the required limiting distribution
 - some *adaptive MCMC* algorithms exist more later (?)