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Introduction

e Mixed audience

— some with (almost) no knowledge about (Markov
chain) Monte Carlo

— some know a little about (Markov chain) Monte
Carlo

— some have used (Markov chain) Monte Carlo
a lot

e Please ask questions/give comments!

e I will discuss topics also discussed by Morten and
Laurant

— Metropolis—Hastings algorithm and Bayesian
statistics

— will use different notation/terminology
e My goal: Everyone should understand

— allmost all I discuss today
— much of what I discuss tomorrow

— the essence of what I talk about on Friday
® You should

— understand the mathematics

— get intuition
e The talk will be available on the web next week

e Remember to ask questions: We have time for it



Plan

e The Markov chain Monte Carlo (MCMC) idea
e Some Markov chain theory

e Implementation of the MCMC idea

— Metropolis—Hastings algorithm

e MCMUC strategies

— independent proposals
— random walk proposals
— combination of strategies

— Gibbs sampler

e Convergence diagnostics

— trace plots
— autocorrelation functions

— one chain or many chains?

e Typical MCMC problems — and some remedies

— high correlation between variables
— multimodality

— different scales



Plan (cont.)

e Bayesian statistics — hierarchical modelling

— Bayes (1763) example
— what is a probability?

— Bayesian hierarchical modelling

e Examples

— analysis of microarray data

— history matching — petroleum application

e More advanced MCMC techniques/ideas

— reversible jump

— adaptive Markov chain Monte Carlo
— mode jumping proposals

— parallelisation of MCMC algorithms

— perfect simulation



Why (Markov chain) Monte Carlo?
e Given a probability distribution of interest
m(z),z € RY
e Usually this means: have a formula for 7(x)

e But normalising constant is often not known
m(x) = ch(x)

— have a formula for h(x)

e Want to

— want to “understand” w(z)

— generates realisations from w(z) and look at
them

— compute mean values

iy = E[f(z)] = / f () (x)da

e Note: most things of interest in a stochastic model
can be expressed as an expectation

— probabilities

— distributions



The Monte Carlo idea

e Probability distribution of interest 7(z),z € RY
e 7(x) is a high dimensional, complex distribution
e Analytical calculations on 7(z) is not possible

e Monte Carlo idea

— generate iid samples 7y, ..., z, from 7(x).

— estimate interesting quantities about 7(x)

— unbiased estimator
Z Bl (@) = Z 1y = by

— estimation uncertainty

Var[i;] = ¥ Z Var|f(z;)] = Var[f(:l:)]

SD|[f(x)]

= SD[ps] = n



The Markov chain Monte Carlo idea

e Probability distribution of interest: m(z),z € R
e 7(x) is a high dimensional, complex distribution
e Analytical calculations on 7(z) is not possible

e Direct sampling from 7(x) is not possible

e Markov chain Monte Carlo idea

— construct a Markov chain, {X;},, so that

lim P(X; =2) = 7(x)

— simulate the Markov chain for many iterations

— for m large enough, x,,z, 1, Zno,... are (es-
sentially) samples from 7(x)

— estimate interesting quantities about 7(x)

— unbiased estimator

1 m+n—1 1 m+n—1
Blji;] = — > E[f(z)] = - > wp=py

— what about the variance?



A (very) simple MCMC example

e Note: This is just for illustration, you should
never never use MCMC for this distribution!

e Let 10°
—e 0, 2=0,1,2,...

m(x) = o
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e Set z( to 0, 1 or 2 with probability 1/3 for each

e Markov chain kernel

{ 2;/20 if z; <9,

Pl =ai=1) = 19 i >0

B [ (10—=;)/20 if z; <9,
Pz = 337,|337,) = { (2; — 9)/(2(5'37, +1)) ifx; >9

1/2 if 7, <0,

P($i+1:$i+1’xi) = {5/(372+1> if z; > 9

e This Markov chain has limiting distribution = (z)

— will explain why later



A (very) simple MCMC example (cont.)

e Trace plots of three runs
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A (very) simple MCMC example (cont.)
e Convergence to the target distribution
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A (very) simple MCMC example (cont.)
e Convergence to the target distribution

5 iterations
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A (very) simple MCMC example (cont.)

e Convergence to the target distribution

50 iterations
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Markov chain Monte Carlo

e Note:

— the chain z, z1, z9,... is not converging!
— the distribution P(X, = z) is converging

— we simulate/observe only the chain z(, 21, zo, . ..

e Need a (general) way to construct a Markov chain
for a given target distribution 7(z).

e To simulate the Markov chain must be easy (or
at least possible)

e Need to decide when (we think) the chain has
converged (well enough)
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Some Markov chain theory

e A Markov chain (z € Q) discrete) is a discrete time
stochastic process {X;},,z; € Q which fulfils the
Markov assumption

P{Xi 1=z Xo=20,...,X; =2} = P{X;11 = 2, 1| X; = 2;}

e Thus: a Markov chain can be specified by

— the initial distribution P{X, =z} = g(z0)
— the transition kernel/matrix

P(y|z) = P(Xip = y|Xi = z)
e Different notations are used

Pij ny P(CL’,y) P(y‘(]ﬁ)
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Some Markov chain theory

e A Markov chain (z € () discrete) is defined by
— initial distribution: f(x)
— transition kernel: P(y[z), note: )  _, P(y|z) =1
e Unique limiting distribution 7 (x) = lim; . f(x;) if
— chain is irreducible, aperiodic and positive re-
current
— if so, we have

ZT{' P(y|x) for all y € Q (1)

€

e Note: A sufficient condition for (1) is the detailed
balance condition

m(x)P(y|x) = m(y)P(z|y) for all x,y € Q

— proof:
> w@)Pylz) = > w(y)P(x
x€efd x€efd
= 7(y) Y _Plaly) ==(y)
xef
e Note:

— in a stochastic modelling setting: P(y|z) is given,
want to find 7(x)

—in an MCMUC setting: w(z) is given, need to
find a P(y|x)
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Implementation of the MCMC idea

e Given a (limiting distribution) n(z),z € Q

e Want a transition kernel so that

Zﬂ' P(y|x) for all y € Q

x€el
e Any solutions?

— # of unknowns: |Q|(|Q2] — 1);
— # of equations: | —1

e Difficult to construct P(y|z) from the above

e Require the detailed balance condition
m(x)P(y|x) = 7(y)P(z|y) for all x,y € Q

e Any solutions:

— # of unknowns: [Q|(|Q] —1)
— # of equations: |Q|(|Q2] —1)/2

e Still many solutions

e Recall: don’t need all solutions, one is enough!

e General (and easy) construction strategy for P(y|x)
is available — Metropolis—Hastings algorithm
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Metropolis—Hastings algorithm
e Detailed balance condition
m(x)P(y|x) = 7(y)P(z|y) for all x,y € Q
e Choose

P(y|lz) = Q(y|r)a(y|zr) for y # z,
where

— Q(y|x) is a proposal kernel, we can choose this
— a(ylz) € 0,1] is an acceptance probability, need
to find a formula for this

e Recall: must have
ZP(y[x) =1 for all z € ()
ye
so then
(zlz) = 1= Qlylz)a(y|)
y7x

e Simulation algorithm

— generate initial state xy ~ f(xy)
—for:=1,2,...
* propose potential new state y; ~ Q(y;|z;_1)
* compute acceptance probability o(y;|z; 1)
* draw u; ~ Uniform(0, 1)
x if u; < a(y;|r;_1) accept y;, i.e. set x; = y;,
otherwise reject y; and set z; = =, 4
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The acceptance probability
e Recall: detailed balance condition
m(z)P(y|z) = 7(y)P(x|y) for all x,y € Q
— Proposal kernel
P(ylz) = Qylz)a(y|z) for y # x
e Thus, must have

m(2)Q(ylr)alylr) = 7(y)Q(z|y)a(zly) for all x # y

e General solution

a(ylr) = r(z,y)m(y)Q(z|y) where r(z,y) = r(y, v)

e Recall: must have

alyle) = r(z, )1 ()Qely) < 1= r(z,y) < ———

T(y)Q(z|y)
1

afaly) = r(e.yr(@)Qyle) < 1= rley) < —me

e Choose r(z,y) as large as possible

T(CL’, y) = min {W(I)Q(y’x)7 W(y)Q(SU’y) }

e Thus




Metropolis—Hastings algorithm

e Recall: For convergence it is sufficient with

— detailed balance
— irreducible
— aperiodic

— positive recurrent

e Detailed balance: ok by construction

® Irreducible: must be checked in each case

— usually easy

e Aperiodic: sufficient that P(z|z) > 0 for one x € ()

— for example by a(y|z) < 1 for one set z,y € ()

e Positive recurrent: in discrete state space, irre-
ducibility and finite state space is sufficient

— more difficult in general, but Markov chain
drifts if it is not recurrent

— usually not a problem in practice

19



Metropolis—Hastings algorithm

e Building blocks:

— target distribution 7(z) (given by problem)
— proposal distribution Q(y|z) (we choose)

— acceptance probability

a(y|r) = min {1,

7T(y)Q(fE!y)}
m(x)Q(y|x)

e Note: unknown normalising constant in 7(z) ok

e A little history

— Metropolis et al. (1953). Equations of state
calculations by fast computing machines. J. of
Chemical Physics.

— Hastings (1970). Monte Carlo simulation meth-
ods using Markov chains and their applica-
tions. Biometrika.

— Green (1995). Reversible jump MCMC com-
putation and Bayesian model determination.
Biometrika.
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A simple MCMC example (revisited)

e Let 10°
m(r)=—e ', 2=0,1,2,...
!
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e Proposal distribution

[ 1/2 forye{r—1,2+1},
Qlylz) = { 0 otherwise

e Acceptance probability

1,3}
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y=z—1: afz—1z)=mn{l, Gm— ¢ :mm{
\ E /
(107t 10
1)1°€ 10
y=x+1 :a(x—l—l\x)—min<1,%>—min{l, }
xl
\ /

e P(y|x) then becomes as specified before
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A (very) simple MCMC example

e Note: This is just for illustration, you should
never use MCMC for this distribution!

e Let 10°
—e 0, 2=0,1,2,...

m(x) = o
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e Set z( to 0, 1 or 2 with probability 1/3 for each

e Markov chain kernel

{ 2;/20 if z; <9,

Pl =ai=1) = 19 i >0

B [ (10—=;)/20 if z; <9,
Pz = 337,|337,) = { (2; — 9)/(2(33’7, +1)) ifx; >9

1/2 if 7, <0,

P(JTZ'Jrl:Q?i—’—l’xi) = {5/(372+1> if z; > 9

e This Markov chain has limiting distribution = (z)

— will explain why later

22



Another MCMC example — Ising

e 2D rectangular lattice of nodes

e Number the nodes from 1 to N

e ' € {0,1}: value (colour) in node 7, z = (z
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e First order neighbourhood

e Probability distribution

(1]

m(x) =c-exp

(: parameter; c: normalising constant,

c = Zexp
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Ising example (cont.)

e Probability distribution

m(x) =c-exp ﬁZI L ogd)
i~
e Proposal algorithm
— current state: z = (z!,...,2")
—draw a node k € {1,...,n} at random
— propose to revers the value of node £, i.e.

1 k—1 koo k1
1 —av :

y=(x,....,x o)

e Proposal kernel

(yl) = { + if 2 and y differ in (exactly) one node,

0 otherwise

e Acceptance probability

= min w(y)@(l‘\y)
aylr) = {17 m@(yrx)}

— min 17exp —ﬁZ[[(ajj#l—xk)—[(xj#xk)]

J~k
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Ising example (cont.)

o 5 =0.87

o '=0

On 200n iterations 400n iterations
3
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Ising example (cont.)

e trace plot of number of 1’s

— three runs
— different initial state:

* all 0’s
* all 1’s
* independent random in each node
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Continuous state space

e Target distribution

— discrete: 7(z),x € ()

— continuous: 7(z),z € RY

e Proposal distribution

— discrete: Q(y|z)

— continuous: Q(y|r)

e Acceptance probability

— discrete: a(y|r)

— continuous: «a(y|z)

a(y|r) = min {1,

® Rejection probability

— discrete:

(2) =1-) _ Qylz)aly|x)

y7x

— continuous:

B =1- /RNQ(y\x)a(y!fv)dy
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Plan

e The Markov chain Monte Carlo (MCMC) idea
e Some Markov chain theory

e Implementation of the MCMUC idea

— Metropolis—Hastings algorithm

e MCMUC strategies

— independent proposals
— random walk proposals
— combination of strategies

— Gibbs sampler

e Convergence diagnostics

— trace plots
— autocorrelation functions

— one chain or many chains?

e Typical MCMC problems — and some remedies

— high correlation between variables
— multimodality

— different scales
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