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Introduction
• Mixed audience

– some with (almost) no knowledge about (Markov

chain) Monte Carlo

– some know a little about (Markov chain) Monte

Carlo

– some have used (Markov chain) Monte Carlo

a lot

• Please ask questions/give comments!

• I will discuss topics also discussed by Morten and

Laurant

– Metropolis–Hastings algorithm and Bayesian

statistics

– will use different notation/terminology

• My goal: Everyone should understand

– allmost all I discuss today

– much of what I discuss tomorrow

– the essence of what I talk about on Friday

• You should

– understand the mathematics

– get intuition

• The talk will be available on the web next week

• Remember to ask questions: We have time for it
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Plan

• The Markov chain Monte Carlo (MCMC) idea

• Some Markov chain theory

• Implementation of the MCMC idea

– Metropolis–Hastings algorithm

• MCMC strategies

– independent proposals

– random walk proposals

– combination of strategies

– Gibbs sampler

• Convergence diagnostics

– trace plots

– autocorrelation functions

– one chain or many chains?

• Typical MCMC problems — and some remedies

– high correlation between variables

– multimodality

– different scales
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Plan (cont.)

• Bayesian statistics — hierarchical modelling

– Bayes (1763) example

– what is a probability?

– Bayesian hierarchical modelling

• Examples

– analysis of microarray data

– history matching — petroleum application

• More advanced MCMC techniques/ideas

– reversible jump

– adaptive Markov chain Monte Carlo

– mode jumping proposals

– parallelisation of MCMC algorithms

– perfect simulation
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Why (Markov chain) Monte Carlo?

• Given a probability distribution of interest

π(x), x ∈ R
N

• Usually this means: have a formula for π(x)

• But normalising constant is often not known

π(x) = ch(x)

– have a formula for h(x)

• Want to

– want to “understand” π(x)

– generates realisations from π(x) and look at

them

– compute mean values

µf = E[f(x)] =

∫
f(x)π(x)dx

• Note: most things of interest in a stochastic model

can be expressed as an expectation

– probabilities

– distributions
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The Monte Carlo idea

• Probability distribution of interest π(x), x ∈ R
N

• π(x) is a high dimensional, complex distribution

• Analytical calculations on π(x) is not possible

• Monte Carlo idea

– generate iid samples x1, . . . , xn from π(x).

– estimate interesting quantities about π(x)

µf = E[f(x)] =

∫
f(x)π(x)dx

µ̂f =
1

n

n∑

i=1

f(xi)

– unbiased estimator

E[µ̂f ] =
1

n

n∑

i=1

E[f(xi)] =
1

n

n∑

i=1

µf = µf

– estimation uncertainty

Var[µ̂f ] =
1

n2

n∑

i=1

Var[f(xi)] =
Var[f(x)]

n

⇒ SD[µ̂f ] =
SD[f(x)]√

n
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The Markov chain Monte Carlo idea

• Probability distribution of interest: π(x), x ∈ R
N

• π(x) is a high dimensional, complex distribution

• Analytical calculations on π(x) is not possible

• Direct sampling from π(x) is not possible

• Markov chain Monte Carlo idea

– construct a Markov chain, {Xi}∞i=0, so that

lim
i→∞

P(Xi = x) = π(x)

– simulate the Markov chain for many iterations

– for m large enough, xm, xm+1, xm+2, . . . are (es-

sentially) samples from π(x)

– estimate interesting quantities about π(x)

µf = E[f(x)] =

∫
f(x)π(x)dx

µ̂f =
1

n

m+n−1∑

i=m

f(xi)

– unbiased estimator

E[µ̂f ] =
1

n

m+n−1∑

i=m

E[f(xi)] =
1

n

m+n−1∑

i=m

µf = µf

– what about the variance?
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A (very) simple MCMC example

• Note: This is just for illustration, you should

never never use MCMC for this distribution!

• Let

π(x) =
10x

x!
e−10 , x = 0, 1, 2, . . .
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• Set x0 to 0, 1 or 2 with probability 1/3 for each

• Markov chain kernel

P(xi+1 = xi − 1|xi) =

{
xi/20 if xi ≤ 9,

1/2 if xi > 9

P(xi+1 = xi|xi) =

{
(10 − xi)/20 if xi ≤ 9,

(xi − 9)/(2(xi + 1)) if xi > 9

P(xi+1 = xi + 1|xi) =

{
1/2 if xi ≤ 9,

5/(xi + 1) if xi > 9

• This Markov chain has limiting distribution π(x)

– will explain why later
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A (very) simple MCMC example (cont.)

• Trace plots of three runs
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A (very) simple MCMC example (cont.)

• Convergence to the target distribution

0 iterations
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A (very) simple MCMC example (cont.)

• Convergence to the target distribution

5 iterations
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A (very) simple MCMC example (cont.)

• Convergence to the target distribution

50 iterations
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Markov chain Monte Carlo

• Note:

– the chain x0, x1, x2, . . . is not converging!

– the distribution P(Xn = x) is converging

– we simulate/observe only the chain x0, x1, x2, . . .

• Need a (general) way to construct a Markov chain

for a given target distribution π(x).

• To simulate the Markov chain must be easy (or

at least possible)

• Need to decide when (we think) the chain has

converged (well enough)
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Some Markov chain theory

• A Markov chain (x ∈ Ω discrete) is a discrete time

stochastic process {Xi}∞i=0, xi ∈ Ω which fulfils the

Markov assumption

P{Xi+1 = xi+1|X0 = x0, . . . , Xi = xi} = P{Xi+1 = xi+1|Xi = xi}

• Thus: a Markov chain can be specified by

– the initial distribution P{X0 = x0} = g(x0)

– the transition kernel/matrix

P(y|x) = P(Xi+1 = y|Xi = x)

• Different notations are used

Pij Pxy P(x, y) P(y|x)
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Some Markov chain theory

• A Markov chain (x ∈ Ω discrete) is defined by

– initial distribution: f(x0)

– transition kernel: P(y|x), note:
∑

y∈Ω P (y|x) = 1

• Unique limiting distribution π(x) = limi→∞ f(xi) if

– chain is irreducible, aperiodic and positive re-

current

– if so, we have

π(y) =
∑

x∈Ω

π(x)P(y|x) for all y ∈ Ω (1)

• Note: A sufficient condition for (1) is the detailed

balance condition

π(x)P(y|x) = π(y)P(x|y) for all x, y ∈ Ω

– proof:
∑

x∈Ω

π(x)P(y|x) =
∑

x∈Ω

π(y)P(x|y)

= π(y)
∑

x∈Ω

P(x|y) = π(y)

• Note:

– in a stochastic modelling setting: P(y|x) is given,

want to find π(x)

– in an MCMC setting: π(x) is given, need to

find a P(y|x)
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Implementation of the MCMC idea

• Given a (limiting distribution) π(x), x ∈ Ω

• Want a transition kernel so that

π(y) =
∑

x∈Ω

π(x)P(y|x) for all y ∈ Ω

• Any solutions?

– # of unknowns: |Ω|(|Ω| − 1);

– # of equations: |Ω| − 1

• Difficult to construct P(y|x) from the above

• Require the detailed balance condition

π(x)P(y|x) = π(y)P(x|y) for all x, y ∈ Ω

• Any solutions:

– # of unknowns: |Ω|(|Ω| − 1)

– # of equations: |Ω|(|Ω| − 1)/2

• Still many solutions

• Recall: don’t need all solutions, one is enough!

• General (and easy) construction strategy for P(y|x)

is available → Metropolis–Hastings algorithm
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Metropolis–Hastings algorithm

• Detailed balance condition

π(x)P(y|x) = π(y)P(x|y) for all x, y ∈ Ω

• Choose

P(y|x) = Q(y|x)α(y|x) for y 6= x,

where

– Q(y|x) is a proposal kernel, we can choose this

– α(y|x) ∈ [0, 1] is an acceptance probability, need

to find a formula for this

• Recall: must have
∑

y∈Ω

P(y|x) = 1 for all x ∈ Ω

so then

P(x|x) = 1 −
∑

y 6=x

Q(y|x)α(y|x)

• Simulation algorithm

– generate initial state x0 ∼ f(x0)

– for i = 1, 2, . . .

∗ propose potential new state yi ∼ Q(yi|xi−1)

∗ compute acceptance probability α(yi|xi−1)

∗ draw ui ∼ Uniform(0, 1)

∗ if ui ≤ α(yi|xi−1) accept yi, i.e. set xi = yi,

otherwise reject yi and set xi = xi−1
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The acceptance probability
• Recall: detailed balance condition

π(x)P(y|x) = π(y)P(x|y) for all x, y ∈ Ω

– Proposal kernel

P(y|x) = Q(y|x)α(y|x) for y 6= x

• Thus, must have

π(x)Q(y|x)α(y|x) = π(y)Q(x|y)α(x|y) for all x 6= y

• General solution

α(y|x) = r(x, y)π(y)Q(x|y) where r(x, y) = r(y, x)

• Recall: must have

α(y|x) = r(x, y)π(y)Q(x|y) ≤ 1 ⇒ r(x, y) ≤ 1

π(y)Q(x|y)

α(x|y) = r(x, y)π(x)Q(y|x) ≤ 1 ⇒ r(x, y) ≤ 1

π(x)Q(y|x)

• Choose r(x, y) as large as possible

r(x, y) = min

{
1

π(x)Q(y|x)
,

1

π(y)Q(x|y)

}

• Thus

α(y|x) = min

{
1,

π(y)Q(x|y)

π(x)Q(y|x)

}
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Metropolis–Hastings algorithm

• Recall: For convergence it is sufficient with

– detailed balance

– irreducible

– aperiodic

– positive recurrent

• Detailed balance: ok by construction

• Irreducible: must be checked in each case

– usually easy

• Aperiodic: sufficient that P(x|x) > 0 for one x ∈ Ω

– for example by α(y|x) < 1 for one set x, y ∈ Ω

• Positive recurrent: in discrete state space, irre-

ducibility and finite state space is sufficient

– more difficult in general, but Markov chain

drifts if it is not recurrent

– usually not a problem in practice
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Metropolis–Hastings algorithm

• Building blocks:

– target distribution π(x) (given by problem)

– proposal distribution Q(y|x) (we choose)

– acceptance probability

α(y|x) = min

{
1,

π(y)Q(x|y)

π(x)Q(y|x)

}

• Note: unknown normalising constant in π(x) ok

• A little history

– Metropolis et al. (1953). Equations of state

calculations by fast computing machines. J. of

Chemical Physics.

– Hastings (1970). Monte Carlo simulation meth-

ods using Markov chains and their applica-

tions. Biometrika.

– Green (1995). Reversible jump MCMC com-

putation and Bayesian model determination.

Biometrika.
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A simple MCMC example (revisited)

• Let

π(x) =
10x

x!
e−10 , x = 0, 1, 2, . . .

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

• Proposal distribution

Q(y|x) =

{
1/2 for y ∈ {x − 1, x + 1},
0 otherwise

• Acceptance probability

y = x − 1 : α(x − 1|x) = min



1,

10x−1

(x−1)!e
−10

10x

x! e−10



 = min

{
1,

x

10

}

y = x + 1 : α(x + 1|x) = min



1,

10x+1

(x+1)!e
−10

10x

x!
e−10



 = min

{
1,

10

x + 1

}

• P(y|x) then becomes as specified before

21



A (very) simple MCMC example

• Note: This is just for illustration, you should

never use MCMC for this distribution!

• Let

π(x) =
10x

x!
e−10 , x = 0, 1, 2, . . .
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• Set x0 to 0, 1 or 2 with probability 1/3 for each

• Markov chain kernel

P(xi+1 = xi − 1|xi) =

{
xi/20 if xi ≤ 9,

1/2 if xi > 9

P(xi+1 = xi|xi) =

{
(10 − xi)/20 if xi ≤ 9,

(xi − 9)/(2(xi + 1)) if xi > 9

P(xi+1 = xi + 1|xi) =

{
1/2 if xi ≤ 9,

5/(xi + 1) if xi > 9

• This Markov chain has limiting distribution π(x)

– will explain why later
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Another MCMC example — Ising

• 2D rectangular lattice of nodes

• Number the nodes from 1 to N

1 2 10

11 12

100

• xi ∈ {0, 1}: value (colour) in node i, x = (x1, . . . , xN)

• First order neighbourhood

• Probability distribution

π(x) = c · exp



−β

∑

i∼j

I(xi 6= xj)





β: parameter; c: normalising constant,

c =


∑

x

exp



−β

∑

i∼j

I(xi 6= xj)







−1
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Ising example (cont.)

• Probability distribution

π(x) = c · exp



−β

∑

i∼j

I(xi 6= xj)





• Proposal algorithm

– current state: x = (x1, . . . , xN)

– draw a node k ∈ {1, . . . , n} at random

– propose to revers the value of node k, i.e.

y = (x1, . . . , xk−1, 1 − xk, xk+1, . . . , xN)

k

• Proposal kernel

Q(y|x) =

{
1
N

if x and y differ in (exactly) one node,

0 otherwise

• Acceptance probability

α(y|x) = min

{
1,

π(y)Q(x|y)

π(x)Q(y|x)

}

= min



1, exp



−β

∑

j∼k

[
I(xj 6= 1 − xk) − I(xj 6= xk)

]
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Ising example (cont.)

• β = 0.87

• x0 = 0

0n 200n iterations 400n iterations

600n 800n iterations 1000n iterations

5000n 10000n iterations 15000n iterations

20000n 25000n iterations 30000n iterations
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Ising example (cont.)

• trace plot of number of 1’s

– three runs

– different initial state:

∗ all 0’s

∗ all 1’s

∗ independent random in each node

0 10000 20000 30000 40000 50000

0
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0
0
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Continuous state space

• Target distribution

– discrete: π(x), x ∈ Ω

– continuous: π(x), x ∈ R
N

• Proposal distribution

– discrete: Q(y|x)

– continuous: Q(y|x)

• Acceptance probability

– discrete: α(y|x)

– continuous: α(y|x)

α(y|x) = min

{
1,

π(y)Q(x|y)

π(x)Q(y|x)

}

• Rejection probability

– discrete:

r(x) = 1 −
∑

y 6=x

Q(y|x)α(y|x)

– continuous:

r(x) = 1 −
∫

R
N

Q(y|x)α(y|x)dy
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Plan

• The Markov chain Monte Carlo (MCMC) idea

• Some Markov chain theory

• Implementation of the MCMC idea

– Metropolis–Hastings algorithm

• MCMC strategies

– independent proposals

– random walk proposals

– combination of strategies

– Gibbs sampler

• Convergence diagnostics

– trace plots

– autocorrelation functions

– one chain or many chains?

• Typical MCMC problems — and some remedies

– high correlation between variables

– multimodality

– different scales
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