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WHAT DO WE PROPOSE, AND WHY?

m Objective:

e Exceptionally accurate, fast numerical solutions
to realistic three-phase flows in porous media

m Approach:

e Develop analytical solution to the Riemann problem

e Use it as a building block for general 1D problems,
via a front-tracking method

e Solve three-phase flow along streamlines
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MATHEMATICAL MODEL

m Assumptions:

e Immiscible, incompressible fluids
e Multiphase extension of Darcy’s law
= Negligible capillary effects

m Equations:
e Pressure equation (elliptic)

V'VT:O, VT:—lTl;Vp, ZT EZ'W_I_]O_I_ZQ

e A system of saturation equations (hyperbolic)
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CONDITIONS FOR HYPERBOLICITY

(J. and Patzek: TIPM in press)

m Essential condition: a positive endpoint slope of the
relative permeability of the least wetting phase
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THE THREE-PHASE RIEMANN PROBLEM

m Riemann problem: find a weak (possibly discontinuous)
solution to the 2x2 system of equations

diU+0,f =0, —co<X<oo, t>0

U, x<O U
u, x=0 i

u(x,0) :{

m Self-similarity ( “stretching” |
or “coherence” principle):

u(x,t) =U(g),where ¢ = x/t
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SOLUTION OF THE RIEMANN PROBLEM

u
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WAVE TYPES (TWO-PHASE FLOW)

|

m The fractional flow function is S-shaped, 7
with a single inflection point T

m The only admissible wave types are: 0

u_

e Rarefaction (R) M
u_

e Shock (S) 497 o
u_

e Rarefaction-shock (RS) U*u+
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WAVE TYPES (THREE-PHASE FLOW)

m The fractional flow functions have single, continuous
inflection loci (natural generalization of the two-phase case)
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m There are 9 admissible wave combinations

o Two separate waves: W,, W,

o Each wave may only be of type R, S, or RS
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WAVE TYPES (THREE-PHASE FLOW)

(J. and Patzek: TIPM 2004)

SINTEF



THREE-PHASE CAUCHY PROBLEM

m Solution to the Riemann problem is insufficient if:

¢ INnitial conditions different from constant
e Variable injection saturations (e.g. WAG)

u;\

------

--------

......
.

x
x
x
Na

m Front-tracking method:
e Piecewise constant approximation of the solution
e Sequence of Riemann problems
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FRONT-TRACKING ALGORITHM

t A

SINTEF Applied Mathematics

11



FRONT-TRACKING ALGORITHM
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FRONT-TRACKING ALGORITHM

New Riemann problem

T

Collision
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FRONT-TRACKING ALGORITHM

t A
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FRONT-TRACKING ALGORITHM

t 1 New Riemann problem

T

Collision

t
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EXAMPLE 1

m Riemann problem involving local wave curves
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Saturation path:
Exact solution and front-tracking solution
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EXAMPLE 2: LINEAR WAG

m Initially, reservoir with 80% oil, 20% gas

m Alternate cycles of water and gas injection

m Front-tracking solution with d, = 0.005

m Half a million Riemann solves — 5 sec on a desktop PC
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STREAMLINE METHODS

m Basic idea: decouple the three-dimensional transport
Into a series of 1D problems along streamlines

m Sequential solution of pressure and saturations (IMPES)

e Pressure equation (fixed saturations)

V‘VT:O, VT:—ﬂTI;Vp

e Compute streamlines for the velocity field vy

e System of saturation equations (along each streamline)

S, f,) (0
at(sgjm{fgj:(o} where 7(s) = jmdf
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(Figures from Yann Gautier)

Propagate saturations

Resolve pressure
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New time step

Trace streamlines

Initial saturation
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NUMERICAL SIMULATIONS

(Lie and J.: CGEOS submitted)

m Highly heterogeneous, shallow-marine formation,
taken from the SPE10 comparative solution project

e Permeability variations of 6 orders of magnitude
e Five vertical wells (1 injector, 4 producers)

e Two different injection schemes:

(1) Continuous water injection
(2) Water-alternating-gas injection (WAG)
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FLUID PRODUCTION

m Comparison of fluid recovery predictions against the
commercial reservoir simulator Eclipse® (Schlumberger)

m Oil production rate

Continuous water injection

T T T T T T T T
a B — Eclipse
# 5L 200 days
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Water-alternating-gas injection
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m Gas production rate

Continuous water injection

—— Eclipse
+ 5L 200 days
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Water-alternating-gas injection

m/da yS

—— Eclipse

—a- SL: 50 days
* SL:25days
o SL:12.5days

1 1
200 400 600 800 1000 1200 1400 1600 1800
days

Applied Mathematics

2000

22



m Water production rate

Continuous water injection

Water-alternating-gas injection
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m CPU times: S
Water injection WAG

ECLIPSE 1h 22min 8h 20min

Streamline S0min 2h 13min
(dt = 200 days) (dt = 25 days)
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CONCLUSIONS

m The integration of analytical Riemann solvers,
the front-tracking method, and streamline simulation,
offers the potential for fast and accurate prediction of
three-phase flow in highly-heterogeneous reservoirs

FUTURE WORK

m Extend the Riemann solver
e Residual saturations
o Relative permeability hysteresis
e Fluid miscibility and compositional effects

m Extend the streamline simulator
e Gravity, compressibility, and capillary pressure effects
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CHARACTER OF THE SYSTEM

The character of the system of first-order equations

f 0
a{“}a{ j:( j & JUu+9,f=0
Y g 0

Is determined by the eigenvalues (n,, n,) and
eigenvectors (r,, r,) of the Jacobian matrix

f’(u)—(f’u f’“j
RN

m Hyperbolic: the eigenvalues are real and
the Jacobian matrix is diagonalizable

e Strictly hyperbolic: eigenvalues are distinct, n; < n,

m Elliptic: eigenvalues are complex conjugates

SINTEF Applied Mathematics

28



CONDITIONS FOR HYPERBOLICITY

m Traditional approach:

Assume certain behavior of
the relative permeabilities

m We use a new approach:

Infer conditions on the
relative permeabilities

SINTEF

Infer loss of hyperbolicity

(J.: PhD 2003)
(J. and Patzek: SPEJ in press)

Enforce hyperbolicity
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ELLIPTIC REGIONS

Regions in the saturation triangle, where the system of
equations is elliptic rather than hyperbolic
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RIEMANN SOLVER ALGORITHM

1

Given injected (left) and initial (right) states: u,, ug

. Set initial guess and trial solution: u,", W, = R, W, = R,

. Solve trial configuration and update wave structure:

fu,. W, W = WaveStruct (U, U, U, T WAt N

(J. and Patzek: TIPM 2004)

. Check admissibility:

If (s; > s,) { Set new Initial guess: u,,
Declare solution invalid: W, = W,* = 0 }

. Check convergence:

If W,W, = W,"W," Stop
Else Set W,"W," « W,W, , u,,' < u,, , Goto 3.
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NONLOCAL WAVE CURVES

m Usual construction assumes that wave curves are local

m This construction may be globally inadmissible: S; £ S,

m Reason: shock curves may present detached branches

e G
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Detached branch
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ROLE OF DETACHED BRANCHES

m Inadmissible solution involving local wave curves: s; > s,loc
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ROLE OF DETACHED BRANCHES

m Inadmissible solution involving detached branch: s; > s,det
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ROLE OF DETACHED BRANCHES

m Admissible solution involving detached branch: S; < s,9¢t
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FRONT-TRACKING IMPLEMENTATION

m If the solution involves discontinuities only,
the front-tracking method is exact

m Rarefactions are approximated by a series of (small)
jump discontinuities

u A

X >
m Data reduction: Exceedingly small Riemann problems
are discarded to avoid blow-up of number of discontinuities
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DATA REDUCTION

SINTEF

If |u_—Ug|< 9, ignore the Riemann problem

If 6,<|u_—Uz|<9,, approximate the Riemann problem by a
single discontinuity with shock speed equal the average of
the Rankine—Hugoniot velocity of each component

If 6, <|u_—Ugl|<0,, approximate the Riemann problem by a
two-shock solution SS,. If 0, £ 0,, goto 4.

Otherwise solve the full Riemann problem
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DATA REDUCTION

18-

1.4rF

1.2

0.6
041

0.2

Left: full resolution of all wave interactions, 5563 Right: weak wave interactions approximated by
in total shocks, 1833 interactions in total of which 234
fully resolved

S1/S2: dashed red/magenta line
R1/R2: solid cyan/blue line Ratio of runtimes is 4.6 : 1
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COMPARISON WITH THE UPWIND FVM

1

| 2 2

Left: front-tracking solution consisting of 1.6 Right: fully implicit upwind method with 100 grid
million Riemann problems. cells and a Courant number of 1.0

The runtimes were approximately equal.
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WATER SATURATION AFTER 2000 DAYS

Continuous water injection

-----
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