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WHAT DO WE PROPOSE, AND WHY?

 Objective:

 Exceptionally accurate, fast numerical solutions
to realistic three-phase flows in porous media

 Approach:

 Develop analytical solution to the Riemann problem

 Use it as a building block for general 1D problems,
via a front-tracking method

 Solve three-phase flow along streamlines
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MATHEMATICAL MODEL

 Assumptions:

• Immiscible, incompressible fluids
• Multiphase extension of Darcy’s law
• Negligible capillary effects

 Equations:

 Pressure equation (elliptic)

 A system of saturation equations (hyperbolic)
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CONDITIONS FOR HYPERBOLICITY

 Essential condition: a positive endpoint slope of the
relative permeability of the least wetting phase

(J. and Patzek: TIPM in press)
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THE THREE-PHASE RIEMANN PROBLEM

 Riemann problem: find a weak (possibly discontinuous)
solution to the 2×2 system of equations
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 Self-similarity ( “stretching”           
or “coherence” principle):

txtx /  where),(),( == ςςUu



6Applied Mathematics

SOLUTION OF THE RIEMANN PROBLEM
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WAVE TYPES (TWO-PHASE FLOW)

 The fractional flow function is S-shaped,
with a single inflection point

 The only admissible wave types are:

 Rarefaction (R)

 Shock (S)

 Rarefaction-shock (RS)
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WAVE TYPES (THREE-PHASE FLOW)

 The fractional flow functions have single, continuous
inflection loci (natural generalization of the two-phase case)

 There are 9 admissible wave combinations

 Two separate waves: W1, W2

 Each wave may only be of type R, S, or RS
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WAVE TYPES (THREE-PHASE FLOW)
(J. and Patzek: TIPM 2004)
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THREE-PHASE CAUCHY PROBLEM

 Solution to the Riemann problem is insufficient if:
 Initial conditions different from constant
 Variable injection saturations (e.g. WAG)

u

x
 Front-tracking method:

 Piecewise constant approximation of the solution
 Sequence of Riemann problems
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FRONT-TRACKING ALGORITHM
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EXAMPLE 1

 Riemann problem involving local wave curves

δu = 0.05

δu = 0.002

Saturation path:
Exact solution and front-tracking solution
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EXAMPLE 2: LINEAR WAG

 Initially, reservoir with 80% oil, 20% gas
 Alternate cycles of water and gas injection

 Front-tracking solution with du = 0.005
 Half a million Riemann solves ~ 5 sec on a desktop PC

t = 0

t = 0.1

t = 0.2

t = 0.5

t = 1.5

t = 2.0
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 Basic idea: decouple the three-dimensional transport
into a series of 1D problems along streamlines

 Sequential solution of pressure and saturations (IMPES)

• Pressure equation (fixed saturations)

• Compute streamlines for the velocity field vT

• System of saturation equations (along each streamline)
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Permeability field

Initial saturation

Resolve pressure

Trace streamlines

Propagate saturations

New time step

(Figures from Yann Gautier)
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NUMERICAL SIMULATIONS

 Highly heterogeneous, shallow-marine formation,
taken from the SPE10 comparative solution project

 Permeability variations of 6 orders of magnitude
 Five vertical wells (1 injector, 4 producers)

 Two different injection schemes:
(1) Continuous water injection
(2) Water-alternating-gas injection (WAG)

(Lie and J.: CGEOS submitted)
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FLUID PRODUCTION

 Comparison of fluid recovery predictions against the
commercial reservoir simulator Eclipse® (Schlumberger)

 Oil production rate

Water-alternating-gas injectionContinuous water injection
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 Gas production rate

Water-alternating-gas injectionContinuous water injection
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 CPU times:

2h 13min
(dt = 25 days)

50min
(dt = 200 days)

Streamline

8h 20min1h 22minECLIPSE

WAGWater injection

 Water production rate

Water-alternating-gas injectionContinuous water injection
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CONCLUSIONS

 The integration of analytical Riemann solvers, 
the front-tracking method, and streamline simulation,
offers the potential for fast and accurate prediction of
three-phase flow in highly-heterogeneous reservoirs

FUTURE WORK

 Extend the Riemann solver

 Residual saturations

 Relative permeability hysteresis

 Fluid miscibility and compositional effects

 Extend the streamline simulator

 Gravity, compressibility, and capillary pressure effects
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Backup foils
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THE SATURATION SPACE
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CHARACTER OF THE SYSTEM

The character of the system of first-order equations

is determined by the eigenvalues (n1, n2) and
eigenvectors (r1, r2) of the Jacobian matrix

0fu =∂+∂⇔⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛∂+⎟
⎠

⎞
⎜
⎝

⎛∂ xtxt g
f

v
u

        ,
0
0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=′
vu

vu

gg
ff

,,

,,)(uf

 Hyperbolic: the eigenvalues are real and
the Jacobian matrix is diagonalizable

• Strictly hyperbolic: eigenvalues are distinct, n1 < n2

 Elliptic: eigenvalues are complex conjugates
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CONDITIONS FOR HYPERBOLICITY

 Traditional approach:

Assume certain behavior of
the relative permeabilities Infer loss of hyperbolicity

 We use a new approach:

Infer conditions on the
relative permeabilities Enforce hyperbolicity

(J.: PhD 2003)
(J. and Patzek: SPEJ in press)
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ELLIPTIC REGIONS

Regions in the saturation triangle, where the system of
equations is elliptic rather than hyperbolic
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RIEMANN SOLVER ALGORITHM

1. Given injected (left) and initial (right) states: uL, uR

2. Set initial guess and trial solution: uM
tr, W1

tr = R1, W2
tr = R2

3. Solve trial configuration and update wave structure:

[uM, W1, W2] = WaveStruct (uL, uR, uM
tr, W1

tr, W2
tr)

4. Check admissibility:
If  (s1 > s2) { Set new initial guess: uM

Declare solution invalid: W1
tr = W2

tr = 0 }

5. Check convergence:
If  W1W2 = W1

trW2
tr Stop

Else Set W1
trW2

tr ← W1W2 , uM
tr ← uM , Goto 3.

(J. and Patzek: TIPM 2004)
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NONLOCAL WAVE CURVES

 Usual construction assumes that wave curves are local

 This construction may be globally inadmissible: s1 ≮ s2

 Reason: shock curves may present detached branches

Detached branch
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ROLE OF DETACHED BRANCHES

 Inadmissible solution involving local wave curves: s1 > s2
loc
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ROLE OF DETACHED BRANCHES

 Inadmissible solution involving detached branch: s1 > s2
det
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ROLE OF DETACHED BRANCHES

 Admissible solution involving detached branch: s1 < s2
det
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FRONT-TRACKING IMPLEMENTATION

 If the solution involves discontinuities only,
the front-tracking method is exact

 Rarefactions are approximated by a series of (small)
jump discontinuities

 Data reduction: Exceedingly small Riemann problems
are discarded to avoid blow-up of number of discontinuities

u

x
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1. If                     , ignore the Riemann problem

2. If                           , approximate the Riemann problem by a 
single discontinuity with shock speed equal the average of 
the Rankine–Hugoniot velocity of each component

3. If                         , approximate the Riemann problem by a 
two-shock solution        . If             , goto 4.

4. Otherwise solve the full Riemann problem

1L Ru u δ| − |≤

1 2L Ru uδ δ<| − |≤

2 3L Ru uδ δ<| − |≤

1 2S S 1 2σ σ≤/

DATA REDUCTION
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DATA REDUCTION

Left: full resolution of all wave interactions, 5563 
in total

S1/S2: dashed red/magenta line
R1/R2: solid cyan/blue line

Right: weak wave interactions approximated by 
shocks, 1833 interactions in total of which 234 
fully resolved

Ratio of runtimes is 4.6 : 1
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Left: front-tracking solution consisting of 1.6 
million Riemann problems.

The runtimes were approximately equal.

Right: fully implicit upwind method with 100 grid 
cells and a Courant number of 1.0

COMPARISON WITH THE UPWIND FVM
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WATER SATURATION AFTER 2000 DAYS

Continuous water injection

Water-alternating-gas injection


