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Two-Phase Flow in Porous Media

Pressure equation:

-V.v=gq, v = —K(x)\(S)Vp,

Fluid transport:

oS + V - (vf(9)) = eV (D(S,x)VS)
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Physical Scales in Porous Media Flow

The scales that impact fluid flow in oil reservoirs range from
@ the micrometer scale of pores and pore channels
@ via dm—m scale of well bores and laminae sediments

@ to sedimentary structures that stretch across entire reservoirs.

Scales in reservoirs

1

Simulation mode

Geological model

Pore scale Core scale
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Geological Models

The knowledge database in the oil company

Geomodels consist of geometry and
rock parameters (permeability K and

porosity ¢):
@ K spans many length scales and
has multiscale structure

max K/ min K ~ 103-10°

@ Details on all scales impact flow
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Geological Models

The knowledge database in the oil company

Geomodels consist of geometry and
rock parameters (permeability K and

porosity ¢):
@ K spans many length scales and
has multiscale structure

max K/ min K ~ 103-10°

@ Details on all scales impact flow

Gap between simulation models and geomodels:
@ High-resolution geomodels may have 107 — 10° cells

e Conventional simulators are capable of about 10° — 10° cells

Traditional solution: upscaling of parameters
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Upscaling the Pressure Equation

Upscaling: combine cells to derive coarse grid, determine effective
cell properties

Assume that p satisfies the

elliptic PDE:
~V(K(z)Vp) =q.
Upscaling amounts to finding a
new field K*(Z) on a coarser grid o
such that
~V(K*(Z)Vp") =4, T
pr~p, VIV

Here the overbar denotes averaged quantities on a coarse grid.
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Upscaling the Pressure Equation, cont'd

How do we represent fine-scale heterogeneities on a coarse scale?

@ Arithmetic, geometric, harmonic, or power averaging

K* = (|‘1/‘/‘/K(x)p d:c>

o Equivalent permeabilities ( K, = —Q.L./AP, )

. Vol

p=1

1/p

= v —_— u=0 A u=0 | Ly
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Vision — Fast Simulation of Geomodels

Vision:
Direct simulation of fluid flow on high-resolution geomodels of
highly heterogeneous and fractured porous media in 3D.

Why multiscale methods?

Small-scale variations in the permeability can have a strong impact
on large-scale flow and should be resolved properly. Observation:

@ the pressure may be well resolved on a coarse grid
@ the fluid transport should be solved on the finest scale possible

Thus: a multiscale method for the pressure equation should provide
velocity fields that can be used to simulate flow on a fine scale
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Developing an Alternative to Upscaling

We seek a multiscale methodology that:

@ incorporates small-scale effects into the discretisation on a
coarse scale

@ gives a detailed image of the flow pattern on the fine scale,
without having to solve the full fine-scale system

@ is robust and flexible with respect to the coarse grid

@ is robust and flexible with respect to the fine grid and the
fine-grid solver

@ is accurate and conservative

@ is fast and easy to parallelise
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From Upscaling to Multiscale Methods

Standard upscaling:
r.

BLE

SINTEF Applied Mathematics £ : June 2006 < O 9/30



From Upscaling to Multiscale Methods

Standard upscaling:
r.

BLE

e |

4

Coarse grid blocks:

SINTEF Applied Mathematics £ : June 2006 < O 9/30



From Upscaling to Multiscale Methods

Standard upscaling:
r.

BLE

e |

4

Coarse grid blocks:

)

4

Flow problems:

o

SINTEF Applied Mathematics £ : June 2006 < O 9/30



From Upscaling to Multiscale Methods

Standard upscaling:

-

i

Coarse grid blocks:

|

i

Flow problems:

T

SINTEF

T

Applied Mathematics 5

June 2006

[m]

9/30



From Upscaling to Multiscale Methods

Standard upscaling:

Coarse grid blocks:

i i

Flow problems: —

]

@ SINTEF Applied Mathematics June 2006 < O 9/30




From Upscaling to Multiscale Methods

Standard upscaling: Multiscale method:
r-

1.;'

Coarse grid blocks:

i i

Flow problems: —

]

@ SINTEF Applied Mathematics . A June 2006 < O 9/30




From Upscaling to Multiscale Methods

Standard upscaling:

Coarse grid blocks:

i i

Flow problems: —

]

SINTEF

Multiscale method:

1.;'

r-

e |

4

Coarse grid blocks:

4

Flow problems:

o

Applied Mathematics .

June 2006



From Upscaling to Multiscale Methods

Standard upscaling:

Coarse grid blocks:
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From Upscaling to Multiscale Methods

Standard upscaling: Multiscale method:
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Multiscale Mixed Finite Elements
Formulation

Mixed formulation:

Find (v,p) € Hy'™ x L? such that

— 1,div
/()\K) 1u'vdm—/pv'ud:1::O, Vu € Hy™",

/zv-vdxz/qu, Ve e L2

Multiscale discretisation:
Seek solutions in low-dimensional subspaces

U™ c Hy™ and V € L2,

where local fine-scale properties are incorporated into the basis
functions. |
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(Multiscale) Mixed Finite Elements

Discretisation matrices

bij:/ﬂd}i()\K)_l?/)j dl’,

(e 0) ()= ()
T - )
SV g Cz‘kZ/Q%V'l/%dl’

Basis ¢y, for pressure: equal one in cell k, zero otherwise

Basis 1; for velocity:

1.order Raviart—=Thomas: Multiscale:

e
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Multiscale Mixed Finite Elements

Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.
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We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V'
and U™? such that:
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Multiscale Mixed Finite Elements

Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V'
and U™? such that:

@ For each coarse block Tj, there is a basis function ¢; € V.
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Multiscale Mixed Finite Elements

Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

)

We construct a coarse grid, and choose the discretisation spaces V'
and U™? such that:

@ For each coarse block Tj, there is a basis function ¢; € V.

@ For each coarse edge I';;, there is a basis function ¢;; € U™?.
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Multiscale Mixed Finite Eleme

Basis for the Velocity Field

For each coarse edge [';;, define a basis
function

Vi TUTy — R?

with unit flux through I;; and no flow
across O(T; U Tj).
We use Q,Z)Z'j = —)\Kquij with

w;(x), forx € T,
V- = ()

—wj(z), forx ey,

with boundary conditions v;; - n = 0 on O(T; U Tj).

Global velocity:
v =) _,;;VijYij, where v;; are (coarse-scale) coefficients. J
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Multiscale Mixed Finite Elements

Basis for Velocity - the Source Weights.
If T; contains a source, i.e., fTi qdx # 0, then

wi(z) = q(x)

Jr, a(€) d¢

Otherwise we may choose

1
wile) = g 53;3:;7

or to avoid high flow through low-perm regions

The latter is more accurate - even for strong anisotropy.
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Advantage: Accuracy
10th SPE Comparative Solution Project

@ Geomodel: 60 x 220 x 85 ~ 1,1 million grid cells
@ Simulation: 2000 days of production
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Advantage: Accuracy

SPE10 Benchmark (5 x 11 x 17 Coarse Grid)
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Nested gridding: upscaling + downscaling
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Advantage: Robustness

Theoretical backing from homogenisation theory

Question:
Does refining the coarse grid increase accuracy?

Error-measures for various coarse mesh-sizes.

Relative errar in enargy-norm Relative error in L-norm
04 04
0.2 W 0z
0 o
¥ > o X v P o o o P L
o s Tt S, m*@
v S v P
Relative ermor in saturation at D\%‘ Max error in watercat " Chen and Hou 2002

O(H + e+ ] —)

error is bounded by

H
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Advantage: Robustness

SPE10, Layer 85 (60 x 220 Grid)

Reference saturation profile

MsMFEM saturation profile

Coarse grid (6 x 22) saturation profile MsMFEM saturation profile

1.2

Coarse grid (3 x 11) saturation profile
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Computational Complexity

Direct solution may be more efficient, so why bother with multiscale?

. - 2 . I Solution of global system

e Full simulation: O(10°) time 7 ]
Ste ps . ° Fine scale solution

@ Basis functions need not be o . ‘ ]

recomputed “ ]

Also: o ]

@ Possible to solve very large 1 |

problems T ]

8x8x8 16x16x16 32x32x32 64x64x64

o Easy parallelization

Order-of-magnitude argument: 128 x 128 x 128 grid,
linear algebra of complexity O(n"").
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Corner-Point Grids

Industry standard for modelling complex reservoir geology

Specified in terms of:
@ areal 2D mesh of vertical or
inclined pillars
@ each volumetric cell is restriced by
four pillars
@ each cell is defined by eight corner
points, two on each pillar

s s
e ——

1
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Discretisation on Corner-Point Grids

Exotic cell geometries from a simulation point-of-view

Accurate simulation of industry-standard grid models is
challenging!

Skew and deformed grid i
] Non-matching cells:
blocks:

e U
O \4

Our approach: mixed finite elements and/or mimetic methods

I. Aavatsmark (after lunch): multipoint finite-volume methods
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Discretisation on General Subgrids

@ Can use standard mixed FEM for many geometries provided
that one has

e mappings (Piola transforms)
o reference elements

@ Subdivision of corner-point cells into tetrahedra

e Mimetic finite differences (recent work by Brezzi, Lipnikov,
Shashkov, Simoncini)
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Mimetic Finite Differences

Let u, v be piecewise linear vector functions and u, v be the
corresponding vectors of discrete velocities over faces in the grid,

ie.,
1
Vi = / v(s)-nds
’ek’ ex

Then the block B in the mixed system satisfies

T -1 T T
v' K~ u=v"Bu = vipBrug
[ (= 3 vimeu

EeQ
The matrices B define discrete inner products

Mimetic idea:

Replace Bg with some Mg that mimics some properties of the
continuous inner product (SPD, globally bounded, Gauss-Green for
linear pressure)
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Multiscale Mixed FEM on Corner-Point Grids

Mimetic strategy:

@ either assume faces
piecewise planer or curved

@ one degree of freedom per
moderately curved face

\ « @ easy to deal with
Subdivision strategy: non-matching faces
@ implicitly assumes each face @ the discrete inner product
to be piecewise planar can be used on the coarse
e must split every scale in conjunction with
non-degenerate cell in six (or any subgrid solver

five) tetrahedrons
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Accuracy on a 32 x 32 x 8 Model

RTO0 MFEM Homogeneous Log-normal Fluvial
Coarse grid e(v) e(s) e(v) e(s) e(v) e(s)
16 X 16 x 4 0.1233 0.0161 | 0.1915 0.0495 | 0.4069 0.2299
8x 8x2 0.1300 0.0206 | 0.2769  0.1087 | 0.3845  0.2904
4x 4x1 0.1070  0.0225 | 0.2135 0.1501 | 0.3046  0.2420
2x 2x1 0.0112  0.0090 | 0.1111 0.0724 | 0.1564 0.0680
Mimetic FDM e(v) e(s) e(v) e(s) e(v) e(s)
16 x 16 x 4 0.1152  0.0193 | 0.1963 0.0532 | 0.4143 0.2278
8x 8x2 0.1282  0.0213 | 0.3174 0.1157 | 0.4742 0.3607
4x 4x1 0.1070  0.0249 | 0.2212 0.1582 | 0.3119  0.2442
2x 2x1 0.0111 0.0103 | 0.1214 0.0751 | 0.1589  0.0679

SINTEF Applied Mathematics A June 2006 < O 25/30



Advantage:Flexibility

Multiscale mixed/mimetic formulation:

coarse grid = union of cells in fine grid

@ Given a numerical method that
works on the fine grid, the
implementation is straightforward.

@ One avoids resampling when going
from fine to coarse grid, and vice
versa

Other formulations:

Finite-volume methods: based upon dual grid — special cases
that complicate the implementation in the presence of faults, local
refinements, etc.
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Flexibility wrt. Grids

Corner-point grid model: Coarse-grid cells:
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Flexibility wrt. Grids

Around Flow Barriers, Fractures, etc

Non-uniform grid, hexahedral cells Non-uniform grid, general cells General grid-cell

10 »
80
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Grid model courtesy of M. Karimi-Fard, Stanford
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Future work
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