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Two-Phase Flow in Porous Media

Pressure equation:

−∇ · v = q, v = −K(x)λ(S)∇p,

Fluid transport:

φ∂tS +∇ · (vf(S)) = ε∇
(
D(S,x)∇S

)
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Physical Scales in Porous Media Flow

The scales that impact fluid flow in oil reservoirs range from

the micrometer scale of pores and pore channels

via dm–m scale of well bores and laminae sediments

to sedimentary structures that stretch across entire reservoirs.
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Geological Models
The knowledge database in the oil company

Geomodels consist of geometry and
rock parameters (permeability K and
porosity φ):

K spans many length scales and
has multiscale structure

maxK/minK ∼ 103–1010

Details on all scales impact flow

Gap between simulation models and geomodels:

High-resolution geomodels may have 107 − 109 cells

Conventional simulators are capable of about 105 − 106 cells

Traditional solution: upscaling of parameters
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Upscaling the Pressure Equation

Upscaling: combine cells to derive coarse grid, determine effective
cell properties

Assume that p satisfies the
elliptic PDE:

−∇
(
K(x)∇p

)
= q.

Upscaling amounts to finding a
new field K∗(x̄) on a coarser grid
such that

−∇
(
K∗(x̄)∇p∗

)
= q̄,

p∗ ∼ p̄, v∗ ∼ v̄ .
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Here the overbar denotes averaged quantities on a coarse grid.
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Upscaling the Pressure Equation, cont’d

How do we represent fine-scale heterogeneities on a coarse scale?

Arithmetic, geometric, harmonic, or power averaging

K∗ =
( 1

|V |

∫
V
K(x)p dx

)1/p

Equivalent permeabilities ( K∗
xx = −QxLx/∆Px )
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Vision — Fast Simulation of Geomodels

Vision:

Direct simulation of fluid flow on high-resolution geomodels of
highly heterogeneous and fractured porous media in 3D.

Why multiscale methods?

Small-scale variations in the permeability can have a strong impact
on large-scale flow and should be resolved properly. Observation:

the pressure may be well resolved on a coarse grid

the fluid transport should be solved on the finest scale possible

Thus: a multiscale method for the pressure equation should provide
velocity fields that can be used to simulate flow on a fine scale
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Developing an Alternative to Upscaling

We seek a multiscale methodology that:

incorporates small-scale effects into the discretisation on a
coarse scale

gives a detailed image of the flow pattern on the fine scale,
without having to solve the full fine-scale system

is robust and flexible with respect to the coarse grid

is robust and flexible with respect to the fine grid and the
fine-grid solver

is accurate and conservative

is fast and easy to parallelise
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From Upscaling to Multiscale Methods

Standard upscaling:

⇓

⇑

Coarse grid blocks:⇓

⇑

Flow problems:

Multiscale method:

⇓

⇑

Coarse grid blocks:

⇓

⇑

Flow problems:
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Multiscale Mixed Finite Elements
Formulation

Mixed formulation:

Find (v, p) ∈ H1,div
0 × L2 such that∫

(λK)−1u · v dx−
∫
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,∫
`∇ · v dx =

∫
q` dx, ∀` ∈ L2.

Multiscale discretisation:

Seek solutions in low-dimensional subspaces

Ums ⊂ H1,div
0 and V ∈ L2,

where local fine-scale properties are incorporated into the basis
functions.
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(Multiscale) Mixed Finite Elements
Discretisation matrices

(
B C
CT 0

)(
v
p

)
=

(
f
g

)
,

bij =

∫
Ω
ψi

(
λK
)−1

ψj dx,

cik =

∫
Ω
φk∇ · ψi dx

Basis φk for pressure: equal one in cell k, zero otherwise

Basis ψi for velocity:

1.order Raviart–Thomas: Multiscale:
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Multiscale Mixed Finite Elements
Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V
and Ums such that:

For each coarse block Ti, there is a basis function φi ∈ V .

For each coarse edge Γij , there is a basis function ψij ∈ Ums.
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Multiscale Mixed Finite Elements
Basis for the Velocity Field

For each coarse edge Γij , define a basis
function

ψij : Ti ∪ Tj → R2

with unit flux through Γij and no flow
across ∂(Ti ∪ Tj).

Homogeneous medium Heterogeneous medium

We use ψij = −λK∇φij with

∇ · ψij =

{
wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,

with boundary conditions ψij · n = 0 on ∂(Ti ∪ Tj).

Global velocity:

v =
∑

ij vijψij , where vij are (coarse-scale) coefficients.
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Multiscale Mixed Finite Elements
Basis for Velocity - the Source Weights.

If Ti contains a source, i.e.,
∫
Ti
qdx 6= 0, then

wi(x) =
q(x)∫

Ti
q(ξ) dξ

Otherwise we may choose

wi(x) =
1

|Ti|
or to avoid high flow through low-perm regions

wi(x) =
trace(K(x))∫

Ti
trace(K(ξ)) dξ

The latter is more accurate - even for strong anisotropy.
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Advantage: Accuracy
10th SPE Comparative Solution Project

Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert

Upper
Ness

Geomodel: 60× 220× 85 ≈ 1, 1 million grid cells

Simulation: 2000 days of production
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Advantage: Accuracy
SPE10 Benchmark (5× 11× 17 Coarse Grid)
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Advantage: Robustness
Theoretical backing from homogenisation theory

Question:

Does refining the coarse grid increase accuracy?

Error-measures for various coarse mesh-sizes.

Chen and Hou 2002:

error is bounded by

O(H +
√
ε+

√
ε

H
)
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Advantage: Robustness
SPE10, Layer 85 (60× 220 Grid)
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Computational Complexity

Direct solution may be more efficient, so why bother with multiscale?

Full simulation: O(102) time
steps.

Basis functions need not be
recomputed

Also:

Possible to solve very large
problems

Easy parallelization 8x8x8   16x16x16 32x32x32 64x64x64
0

1

2

3

4

5

6

7

8
x 107

Computation of basis functions
Solution of global system

Fine scale solution

Order-of-magnitude argument: 128× 128× 128 grid,
linear algebra of complexity O(n1.2).
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Corner-Point Grids
Industry standard for modelling complex reservoir geology

Specified in terms of:

areal 2D mesh of vertical or
inclined pillars

each volumetric cell is restriced by
four pillars

each cell is defined by eight corner
points, two on each pillar
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Discretisation on Corner-Point Grids
Exotic cell geometries from a simulation point-of-view

Accurate simulation of industry-standard grid models is
challenging!

Skew and deformed grid
blocks:

Non-matching cells:

Our approach: mixed finite elements and/or mimetic methods
I. Aavatsmark (after lunch): multipoint finite-volume methods
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Discretisation on General Subgrids

Can use standard mixed FEM for many geometries provided
that one has

mappings (Piola transforms)
reference elements

Subdivision of corner-point cells into tetrahedra

Mimetic finite differences (recent work by Brezzi, Lipnikov,
Shashkov, Simoncini)
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Mimetic Finite Differences

Let u, v be piecewise linear vector functions and u, v be the
corresponding vectors of discrete velocities over faces in the grid,
i.e.,

vk =
1

|ek|

∫
ek

v(s) · nds

Then the block B in the mixed system satisfies∫
Ω
vTK−1u = vTBu

(
=
∑
E∈Ω

vT
EBEuE

)

The matrices BE define discrete inner products

Mimetic idea:

Replace BE with some ME that mimics some properties of the
continuous inner product (SPD, globally bounded, Gauss-Green for
linear pressure)

Applied Mathematics June 2006 23/30



Multiscale Mixed FEM on Corner-Point Grids

Subdivision strategy:

implicitly assumes each face
to be piecewise planar

must split every
non-degenerate cell in six (or
five) tetrahedrons

Mimetic strategy:

either assume faces
piecewise planer or curved

one degree of freedom per
moderately curved face

easy to deal with
non-matching faces

the discrete inner product
can be used on the coarse
scale in conjunction with
any subgrid solver
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Accuracy on a 32× 32× 8 Model

RT0 MFEM Homogeneous Log-normal Fluvial
Coarse grid e(v) e(s) e(v) e(s) e(v) e(s)
16× 16× 4 0.1233 0.0161 0.1915 0.0495 0.4069 0.2299
8× 8× 2 0.1300 0.0206 0.2769 0.1087 0.3845 0.2904
4× 4× 1 0.1070 0.0225 0.2135 0.1501 0.3046 0.2420
2× 2× 1 0.0112 0.0090 0.1111 0.0724 0.1564 0.0680

Mimetic FDM e(v) e(s) e(v) e(s) e(v) e(s)
16× 16× 4 0.1152 0.0193 0.1963 0.0532 0.4143 0.2278
8× 8× 2 0.1282 0.0213 0.3174 0.1157 0.4742 0.3607
4× 4× 1 0.1070 0.0249 0.2212 0.1582 0.3119 0.2442
2× 2× 1 0.0111 0.0103 0.1214 0.0751 0.1589 0.0679
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Advantage:Flexibility

Multiscale mixed/mimetic formulation:

coarse grid = union of cells in fine grid

Given a numerical method that
works on the fine grid, the
implementation is straightforward.

One avoids resampling when going
from fine to coarse grid, and vice
versa

Other formulations:

Finite-volume methods: based upon dual grid −→ special cases
that complicate the implementation in the presence of faults, local
refinements, etc.
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Flexibility wrt. Grids

Corner-point grid model: Coarse-grid cells:
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Flexibility wrt. Grids
Around Flow Barriers, Fractures, etc
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Flexibility wrt. Grids
Around Wells
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Future work
Extension to faults and fracture networks

1

1
Grid model courtesy of M. Karimi-Fard, Stanford
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