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Introduction: History matching

History matching is the procedure of modifying the reservoir
description to match measured reservoir responses.

Initial: Matched: Reference:
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Introduction: History-matching loop

Evaluate misfit
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Current reservoir parameters

Flow simulation

(observed - calculated)

Is misfit small enough

HM method/Inversion

Yes

E =
∑

(dobs−dcal)2, dcal = g(m)
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Challenges in history-matching loop

Evaluate misfit

No

Current reservoir parameters

Flow simulation

(observed - calculated)

Is misfit small enough

HM method/Inversion

Yes

Problems:

highly under-determined
problem → non-uniqueness

errors in model, data, and
methods

nonlinear forward model

non-convex misfit functions

forward simulations are
computationally demanding
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Challenge I: Non-convex misfit function

Inversion method: Generalized Travel-Time (GTT) inversion with
analytic sensitivities [Vasco et al. (1999), He et al. (2002)]

The generalized travel time is defined as the ’optimal’ time–shift that
maximizes

R2(∆t) = 1−
∑

[yobs(ti + ∆t)− ycal(ti)]
2∑

[yobs(ti)− ȳobs(ti)]2
.
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Travel-time inversion

Basic underlying principles for the history–matching algorithm

Minimize travel-time misfit for water–cut by iterative least-square
minimization algorithm.

Preserve geologic realism by keeping changes to prior geologic
model minimal (if possible).

Only allow smooth large-scale changes. Production data have low
resolution and cannot be used to infer small-scale variations.

Minimization of functional:

∆t̃ : Travel–time shift
S : Sensitivity matrix
m : Reservoir
parameters

‖∆t̃− SδR‖+

Regularization︷ ︸︸ ︷
β1‖δR‖︸ ︷︷ ︸

norm

+β2‖LδR‖︸ ︷︷ ︸
smoothing

S computed analytically along streamlines from a single flow simulation
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Streamline-based history matching

Features of streamlines

Very well suited for modeling large
heterogeneous multiwell systems
dominated by convection

Generally fast flow simulation

Delineate flow pattern
(injector-producer pairs)

Enables analytic sensitivities Source: www.techplot.com

Classes of streamline-based history-matching methods

Assisted history matching

(Generalized) travel-time inversion methods

Streamline-effective property methods

Miscellaneous
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Example: Uncertainty quantification

Simple two-phase model (end-point mobility M = 0.5) on a 2D
horizontal reservoir, 25× 25 cells with lognormal permeability. Result
after eight iterations:
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Challenge II: Long runtime for forward simulations

Evaluate misfit

No

Current reservoir parameters

Flow simulation

(observed - calculated)

Is misfit small enough

HM method/Inversion

Yes

Streamline simulation much faster
than conventional FD-methods.

Still, room for improvement.

Observations:

pressure solver most expensive
part of flow simulation

parameters change very little
from one flow simulation to
the next

Idea: should reuse computations
in areas with minor changes
−→ multiscale methods
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Multiscale pressure solver

Upscaling and downscaling in one step. Runtime like coarse-scale
solver, resolution like fine-scale solver.

Fine grid: 75× 30. Coarse grid: 15× 6
Basis functions for each pair
of coarse blocks Ti ∪ Tj :

Ψij = −λK∇Φij

∇ ·Ψij =

{
wi(x), x ∈ Ti

−wj(x), x ∈ Tj

Global linear system
with 249 unknowns:

∇·v = q, v = −λK∇p

Coarse grid: pressure and fluxes. Fine grid: fluxes
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Further computational savings

Can also reuse basis functions from previous forward simulation.
General idea: use sensitivities to steer updating
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History matching on geological models
Generalized travel-time inversion on million-cell model

1 million cells, 32 injectors, and 69 producers
2475 days ≈ 7 years of water-cut data

Analytical sensitivities along streamlines + travel-time
inversion (quasi-linearization of misfit functional)

Misfit CPU-time (wall clock)
Solver T A ∆ ln k Total Pres. Transp.
Initial 100.0 100.0 0.821 — — —
TPFA 8.9 53.5 0.806 64 min 33 min 28 min
Multiscale 11.2 47.3 0.812 43 min 7 min 32 min
Multiscale 10.4 45.4 0.828 17 min 7 min 6 min

Time-shift misfit: ‖∆t‖2

Amplitude misfit: [
∑

k

∑
j(d

obs
w − dcal

w )2]1/2

Permeability discrepancy:
∑N

i=1 | ln kref
i − ln kmatch

i |/N
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Extension to unstructured grids
Primary concern: how to define smoothing stencil

Generalized Laplacian stencil

Li m = −wiimi +
∑

j∈N (i) wjimj ,

wji = wnorm · ρ(ζ(i, j);R), wii =
∑

j∈N (i) wji.

Neighborhood: N (i) Distance: ζ(i, j) Correlation: ρ(ζ; R, . . . )
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Properties of smoothing: independent of grid density, reduce to
Laplacian on Cartesian grids, decay with distance ζ(i, j), be zero
outside finite range, be bounded as ζ → 0.
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Extension to unstructured grids
Second concern: sensitivities

Sensitivities are spatially additive.

Small/large cells −→ small/large sensitivities

Thus, grid effects are to be expected

sensitivity sensitivity density equisized grid

Rescaling of sensitivities:

Permeability modification ∆Ki scales with sensitivity Gi.
Splitting cell in two =⇒ ∆K →∼ 1

2∆K in each subcell

Therefore: scale sensitivity by relative volume, G̃i = Gi(V̄ /Vi)
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Example:
1200 days observed (5% noise added), 800 matched, 400 predicted

reference sensitivity rescaled sensitivity
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Example:
Grid effects for models with thin layers

Synthetic test case:

21× 21× 7 tensor-product grid with layers of varying thickness.

Layer 1 2 3 4 5 6 7
Thickness 1.0 0.089 0.164 0.212 0.251 0.285 1.0

Initial model: two different constant values
True model: homogeneous

K from original Gij K obtained from scaled Gij
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Example:
Corner-point grid with two non-sealing strike-slip faults

Infill drilling case:

Production data from 3000 days, 2500 used in history match.
At 900 days:

new producer P5 drilled

producer P4 converted to injector
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Example:
Corner-point grid with two non-sealing strike-slip faults, cont’d
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Extensions and similar ideas

Direct continuation of previous work:

Unstructured grids (done for inversion algorithm)

Corner-point grids (testing remains to be done on real models)

Other types of data / more general flow

Other possible directions using streamlines:

Closed-loop reservoir management

History-matching seismic data

Use of sensitivities for other optimization workflows

. . .
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