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Introduction: History matching

History matching is the procedure of modifying the reservoir
description to match measured reservoir responses.
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Introduction: History-matching loop
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Challenges in history-matching loop

[ Clll"l’ﬁllt TEServoir pm'a‘meters

l Problems:

Flow simulation @ highly under-determined
problem — non-uniqueness

l @ errors in model, data, and
Evaluate misfit methods

(observed - calculated)

@ nonlinear forward model

@ non-convex misfit functions

Is misfit small enough

e forward simulations are
computationally demanding

T HM method/Inversion
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Challenge |: Non-convex misfit function

Inversion method: Generalized Travel-Time (GTT) inversion with
analytic sensitivities [Vasco et al. (1999), He et al. (2002)]

The generalized travel time is defined as the 'optimal’ time—shift that
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Travel-time inversion

Basic underlying principles for the history—matching algorithm

@ Minimize travel-time misfit for water—cut by iterative least-square
minimization algorithm.

@ Preserve geologic realism by keeping changes to prior geologic
model minimal (if possible).

@ Only allow smooth large-scale changes. Production data have low

resolution and cannot be used to infer small-scale variations.

Minimization of functional:
At : Travel—time shift

S : Sensitivity matrix Regularization

m - Reservoir |AE - SOR|| + B1|0R | + G| LOR |

parameters —_—— ——
norm smoothing

S computed analytically along streamlines from a single flow simulation
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Streamline-based history matching

Features of streamlines

@ Very well suited for modeling large
heterogeneous multiwell systems
dominated by convection

@ Generally fast flow simulation

@ Delineate flow pattern
(injector-producer pairs)

@ Enables analytic sensitivities

Source: www.techplot.com

Classes of streamline-based history-matching methods
@ Assisted history matching
@ (Generalized) travel-time inversion methods
@ Streamline-effective property methods

@ Miscellaneous
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Example: Uncertainty quantification

Simple two-phase model (end-point mobility M = 0.5) on a 2D
horizontal reservoir, 25 x 25 cells with lognormal permeability. Result
after eight iterations:
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Statistical analysis of mean and standard deviation
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Challenge Il: Long runtime for forward simulations

—={ Current reservoir parameters Streamline Simulation much faster
l than conventional FD-methods.

Flow simulation

Still, room for improvement.

Observations:

l @ pressure solver most expensive
part of flow simulation

Evaluate misfit

(observed - calculated)

@ parameters change very little
from one flow simulation to
the next

Is misfit small enough

T HM method/Inversion
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Challenge Il: Long runtime for forward simulations

[ (jlll'l’ﬁllt TEServoir pm'a‘meters

|

Flow simulation

|

Evaluate misfit

(observed - calculated)

Is misfit small enough

HM method/Inversion
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Streamline simulation much faster
than conventional FD-methods.

Still, room for improvement.
Observations:

@ pressure solver most expensive
part of flow simulation

@ parameters change very little
from one flow simulation to
the next

Idea: should reuse computations
in areas with minor changes
— multiscale methods
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Multiscale pressure solver

Upscaling and downscaling in one step. Runtime like coarse-scale
solver, resolution like fine-scale solver.

Fine grid: 75 x 30. Coarse grid: 15 x 6

Basis functions for each pair
of coarse blocks T; U T} :

U = —AKV®,;

v.w,— wi(x), reT;
Y —wj(z), z€T;

Global linear system

with 249 unknowns:

RinH
i

Vw=gq, v=-AKVp

i

Coarse grid: pressure and fluxes. Fine grid: fluxes

@ SINTEF Applied Mathematics Sept 2008 < O 10/19



Further computational savings

Can also reuse basis functions from previous forward simulation.
General idea: use sensitivities to steer updating

Stacked sensitivities
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History matching on geological models

Generalized travel-time inversion on million-cell model

1 million cells, 32 injectors, and 69 producers
2475 days = 7 years of water-cut data

Analytical sensitivities along streamlines + travel-time
inversion (quasi-linearization of misfit functional)

Misfit CPU-time (wall clock)
Solver T A Alnk | Total Pres. | Transp.
Initial 100.0 | 100.0 | 0.821 — — —
TPFA 8.9 535 | 0.806 | 64 min | 33 min | 28 min
Multiscale 11.2 47.3 | 0.812 43 min 7 min | 32 min
Multiscale 10.4 45.4 | 0.828 17 min 7 min 6 min

Time-shift misfit: [|At||2
Amplitude misfit: >, Zj(d?ubs — dsh?]t/2

Permeability discrepancy: ST [In ke — In kmatch| /N
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Extension to unstructured grids

Primary concern: how to define smoothing stencil

Generalized Laplacian stencil

Lim=—w;m; + Z]EN(%) WjiMmy,
Wj; = Wnorm * P( ' R), Wiy = Zje./\/’(i) Wy
Neighborhood: A/ (%) Correlation: p((; R,...)
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Properties of smoothing: independent of grid density, reduce to
Laplacian on Cartesian grids, decay with distance ((, j), be zero
outside finite range, be bounded as ( — 0.
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Extension to unstructured grids

Second concern: sensitivities

Sensitivities are spatially additive.
Small/large cells — small/large sensitivities

Thus, grid effects are to be expected

Rescaling of sensitivities:

Permeability modification AK; scales with sensitivity G;.
Splitting cell in two = AK —~ %AK in each subcell
Therefore: scale sensitivity by relative volume, G; = G4(V /V;)
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Example:
1200 days observed (5% noise added), 800 matched, 400 predicted

rescaled sensitivity
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Example:

Grid effects for models with thin layers

Synthetic test case:
21 x 21 x 7 tensor-product grid with layers of varying thickness.

Layer ‘ 1 2 3 4 5 6 7
Thickness ‘ 1.0 0.089 0.164 0.212 0.251 0.285 1.0

Initial model: two different constant values
True model: homogeneous

K from original G;; K obtained from scaled G;;
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Example:

Corner-point grid with two non-sealing strike-slip faults

Infill drilling case:

Production data from 3000 days, 2500 used in history match.
At 900 days:

@ new producer P5 drilled

@ producer P4 converted to injector

3 wmmmm P2 log(K)
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Example:

Corner-point grid with two non-sealing strike-slip faults, cont'd
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Extensions and similar ideas

Direct continuation of previous work:
@ Unstructured grids (done for inversion algorithm)
e Corner-point grids (testing remains to be done on real models)

@ Other types of data / more general flow

Other possible directions using streamlines:

Closed-loop reservoir management
History-matching seismic data
Use of sensitivities for other optimization workflows
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