Contribution to the analysis of the corrosion process of commercial steels and newly developed laboratory alloys under simulated incineration conditions

Markus Schmitt, Michael Spiegel

Department of Interface Chemistry & Surface Engineering Düsseldorf, Germany

schmitt@mpie.de

16th February 2010

SP2: Conversion technologies

NGBW objectives SP 2: [excerpt]

- <u>in general</u>: innovative technologies to improve the corrosion resistance with the result of improved energy recovery, reliability and performance of waste and biomass combustion plants
- enhanced process conditions in order to achieve a higher efficiency
 - \rightarrow reduction of corrosion and fouling problems
 - \Rightarrow improving boiler materials in order to withstand HTC
 - \Rightarrow advanced boiler materials and new protecting coatings
- reducing maintenance costs by use of more corrosion resistant, but cost-effective materials and coatings
 - \rightarrow target: double lifetime of heat exchange components at existing steam temperatures

Waste-to-Energy Plant: Conditions

Deposit constituents on WtE superheater in wt.-% [excerpt]

	Na ⁺	K+	Ca ²⁺	Pb ²⁺	Zn ²⁺	SO ₄ ²⁻	Cl-
N º 1	4.1	7.6	12.5	7.4	2.3	28.0	0.5
№ 2	2.4	3.8	13.0	1.6	9.7	16.6	1.2

Flue gas concentration [excerpt]

Species	Concentration [vppm]				
HCl	560.0	2240.0			
SO ₂	35.0	700.0			
SO ₃	1.4	19.6			
NO ₂	71.5	214.5			
СО	64.0	640.0			
Pb	1.1	6.5			
Zn	3.5	51.7			

Max-Planck-Institut für Eisenforschung GmbH

HTC Lab-Scale Facility Setup

• Lab-scale testing of materials and validation of testing methods using plant exposures

• Gases (based on PREWIN conditions)

	HCl	SO ₂	CO ₂	H ₂ O	O ₂	N ₂
Waste	2,000 vppm	200 vppm	-	15 vol%	8 vol%	Bal.
Biomass	200 vppm	-	13 vol%	22 vol%	5 vol%	Bal.

• Synthetic deposits

	Na ₂ SO ₄	K ₂ SO ₄	CaSO ₄	ZnSO ₄	KCl	ZnCl ₂
Waste/biomass superheater	33 wt%	33 wt%	33 wt%			
Waste/biomass superheater		50 wt%			50 wt%	
Waste superheater	25 wt%	25 wt%	25 wt%	25 wt%		
Waste water wall					50 mol%	50 mol%

Commercial Materials

	Material	Cr	Ni	Мо	Mn	Other
	15Mo3	-	-	0.30	0.52	C 0.16; Si 0.26
	13CrMo4 4	0.96	0.07	0.48	0.46	C 0.12; Si 0.21
Low	10CrMo9 10 (T22)	2.10	_	0.92	0.43	C 0.12; Si 0.22
Cr-steels	7CrWMoVNb9 6 (T23)	2.3	-	0.15	0.27	C 0.06; Si 0.15; V 0.2; W 1.58 ; Nb 0.06; B 0.005; N 0.02; Al 0.02
High Cr-steels	X20CrMoV12 1	10.45	0.70	0.88	0.60	C 0.18; Si 0.22; V 0.26
	X10CrWMoVNb9 2 (T92)	9.15	0.26	0.50	0.46	W 1.70 ; Si 0.22; Nb 0.6; N 0.05; V 0.2; B 0.003; C 0.11
High Cr-/Ni- steels	Esshete 1250	14.90	9.65	0.94	6.25	C 0.084; Si 0.58; Nb 0.86; V 0.22; B 0.004
	ТР 347 Н	17.60	10.70	_	1.84	Si 0.29; C 0.05; Nb 0.6
	Sanicro 28	27.00	31.00	3.50	≤ 2.00	C 0.02; Si 0.07; Cu 1.0
Ni-base {	Inconel 625	22.00	Bal.	9.00	_	Fe 3.0; Nb 3.5; C 0.025

Max-Planck-Institut für Eisenforschung GmbH

• Modified 9%Cr-Steels (P91/T92)

Material [wt%]	Cr	Al	Si	Ni
Fe-9Cr-5Al	9.0	5.0	-	-
Fe-9Cr-2.5Al-2.5Si	9.0	2.5	2.5	-
Fe-9Cr-5Ni-2.5Al-2.5Si	9.0	2.5	2.5	5.0

• Iron Aluminides

Material [at%]	Al [wt%]	Fe
Fe-15Al	7.9	bulk
Fe-26Al	14.5	bulk
Fe-40Al	24.4	bulk

α-Fe, Al: disordered A2
Fe₃Al: ordered D0₃ (600°C B2)
FeAl: ordered B2

- 9-12%Cr ferritic-martensitic steels:
 - High strength and creep resistant steels suitable for use at temperatures up to 650°C
- Coatings/alloy composition modification in Cr, Si, Al will improve corrosion resistance
- Cr will enable and promote the outwards diffusion of Al
- Cr-reservoir reduces Al/Si-amount needed to maintain external alumina or silica scale
- Alumina scales are not as severely affected by steam as chromia, silica
- > 5wt.% Cr, Si → too high for industrial applications considering detrimental effects on metallurgical and mechanical properties

- © Superior corrosion resistance in oxidising/sulphidising atmosphere
- Much improved corrosion resistance under molten salt compared to Fe-Cr
 alloys
- © Light-weight structural materials
- Recent efforts led to Fe-Al alloys have the potential to be used for structural applications at least between 650-800°C
- Development and improvement of Fe₃Al and FeAl concerning high strength, high ductility and high creep resistance between 500-1,000°C
- © Fe-Al-X alloys show better creep rates than P92

Corrosion Test: Commercial Steels

Max-Planck-Institut für Eisenforschung GmbH

NGBW IC - Oslo 16.02.2010

11

Corrosion Tests at 600°C for 336 h

Max-Planck-Institut für Eisenforschung GmbH

<u>NGBW</u> IC – Oslo 16.02.2010

Waste, (Na₂-K₂-Ca-Zn)SO₄, 600°C, 336 h

Max-Planck-Institut für Eisenforschung GmbH

Waste, (Na₂-K₂-Ca-Zn)SO₄, 600°C, 336 h

Waste, (Na₂-K₂-Ca-Zn)SO₄, 600°C, 336 h

Max-Planck-Institut für Eisenforschung GmbH

Waste, (Na₂-K₂-Ca-Zn)SO₄, 600°C, 336 h

Max-Planck-Institut für Eisenforschung GmbH

T23: Waste, (Na₂-K₂-Ca-Zn)SO₄, 600°C

Fe-Cr-W: Waste, (Na-K-Ca-Zn)SO₄, 600°C, 168 h

Fe-Cr-W: 600°C, 168 h w/o deposit

Max-Planck-Institut für Eisenforschung GmbH

Biomass, KCI-K₂SO₄, 600°C, 336 h

Max-Planck-Institut für Eisenforschung GmbH

Biomass, KCI-K₂SO₄, 336 h

Max-Planck-Institut für Eisenforschung GmbH

Biomass, KCI-K₂SO₄, 600°C, 168 h

Max-Planck-Institut für Eisenforschung GmbH

Corrosion Test: Modified 9%Cr-Steels / FeAl

Max-Planck-Institut für Eisenforschung GmbH

Summary: Corrosion Tests Fe-Al for 336 h

Waste, KCI-ZnCl₂, 320°C, 336 h

Max-Planck-Institut für Eisenforschung GmbH

Mass Loss: 320°C, 336 h

Max-Planck-Institut für Eisenforschung GmbH

Kinetic: Iron Aluminides, 320°C, 336 h

Mass Loss: 320°C, 96 h, w/ KCI-ZnCl₂

Kinetic: Modified 9%Cr-Steels, 320°C, 336 h

Solubility of Pure Metals: 320°C, 100 h

Waste, (Na₂-K₂-Ca-Zn)SO₄, 600°C, 336 h

Max-Planck-Institut für Eisenforschung GmbH

Mass Loss: 600°C, 336 h

Max-Planck-Institut für Eisenforschung GmbH

- Commercial steels
 - decrease in mass loss by increasing Cr-/Ni-content
 - strong interaction of Cr and W concerning the degradation mechanism
- Iron aluminides:
 - improved corrosion resistance by increasing the AI-concentration
 - except: KCI-ZnCl₂ -> Fe/AI ratio important for low corrosion
- Modified 9%Cr-steels:
 - beneficial behaviour of AI, Si, Ni concerning 'Active Oxidation'
 - Modifications show no increased corrosion performance at combined degradation mechanisms, i.e. 'Hot Corrosion' and 'Active Oxidation'

Thank you for your attention!